
ADAPTIVE AUTOMATION DESIGN AND
IMPLEMENTATION

DISSERTATION

Jason M. Bindewald, Capt, USAF

AFIT-ENG-DS-15-S-007

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-DS-15-S-007

ADAPTIVE AUTOMATION DESIGN AND IMPLEMENTATION

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Jason M. Bindewald, B.A.C.S., M.S.C.O.

Capt, USAF

17 September 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-DS-15-S-007

ADAPTIVE AUTOMATION DESIGN AND IMPLEMENTATION

DISSERTATION

Jason M. Bindewald, B.A.C.S., M.S.C.O.
Capt, USAF

Committee Membership:

Gilbert L. Peterson, PhD
Chairman

Michael E. Miller, PhD
Member

LtCol Brent T. Langhals, PhD
Member

Adedji B. Badiru, PhD
Dean, Graduate School of Engineering and Management



AFIT-ENG-DS-15-S-007

Abstract

To increase human safety, reduce manpower costs, and increase human effectiveness;

the Air Force is moving toward more autonomous systems, such as unmanned aerial

vehicles. As more and better autonomy is added to these platforms, situations exist

that still require human intervention. Adaptive automation is a research field that

addresses the complex interactions within human-machine systems by enabling the

overall system to adjust to changing environments by changing how the machine op-

erates and/or interacts with the human on the fly. Within the adaptive automation

research field, several theoretical aspects of adaptive automation systems have been

described. This research contributes processes and insights for practitioners to move

from a theoretical adaptive automation goal to a real-world system, answering the

question, “How do we create a real-world adaptive automation system around a spe-

cific adaptive automation goal?” Answering this question produces three primary

contributions: the Function to Task Design Process Model for designing adaptive

automation in a human-machine system, a real-time player modeling framework for

imitating a specific person’s task performance, and the Adaptive Automation System

Design Life Cycle for moving designed adaptive automation systems to implementa-

tion. We demonstrate these contributions through a real-world adaptive automation

implementation.

iv



Acknowledgements

I am indebted to my research advisor, Dr. Bert Peterson, for his guidance and

patience. My research committee, Dr. Michael Miller and LtCol Brent Langhals,

have been valuable mentors. Thanks to Dr. Kennard Laviers for implementing the

Space Navigator system and Mr. Bryan Zake for updating the system for future

experiments. I would not have been able to complete this research without the help

of more than fifty volunteers who completed the experiments, some completing as

many as four iterations.

Most critical to this work have been my wife and children. Their motivation is

the fuel for any successes I may achieve.

Jason M. Bindewald

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Adaptive Automation in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Air Force Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
System Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Research Purpose and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
The Function-to-Task Design Process Model . . . . . . . . . . . . . . . . . . . . . . . 13
Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15
An Adaptive Automation System Development

Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II. Function-to-Task Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Designing Adaptive Automation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Automation Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Human-Machine Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
User-Centered Design and Task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Function-to-Task Design Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Step 1: Determine Over-Arching Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Step 2: Identify High-Level Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Step 3: Decompose Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Step 4: Construct Function Relationship Diagram . . . . . . . . . . . . . . . . . . 36
Step 5: Instantiate functions to tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Step 6: Separate Inherent Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Step 7: Define Adaptive Automation States . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Function to Task Process Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Step 1: Determine Over-Arching Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Step 2: Identify High-Level Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Step 3: Decompose Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Step 4: Construct Function Relationship Diagram . . . . . . . . . . . . . . . . . . 48
Step 5: Instantiate functions to tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



Page

Step 6: Separate Inherent Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Step 7: Define Adaptive Automation States . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III. Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Player Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Learning from Previous Game-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Create Generic Player Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Update Individual Player Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Case Study: Space Navigator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Initial Data Capture Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Trajectory Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Generate Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Individual Player Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Individual Player Model Insight Generation . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IV. Adaptive Automation System Design Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Adaptive Automation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
System and Software Development Life-Cycles . . . . . . . . . . . . . . . . . . . . . . 95
Specialized Topic Area Development Life-Cycles . . . . . . . . . . . . . . . . . . . . 96
User-Centered Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Phase 1: Define Adaptive Automation Goals . . . . . . . . . . . . . . . . . . . . . . . 98
Phase 2: Align the design and system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Phase 3: Verify design and implementation alignment

through user testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Phase 4: Add adaptive automation to design and system . . . . . . . . . . . 107
Phase 5: Verify AA design and implementation

alignment through user testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Release Implemented System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Phase 1: Define Adaptive Automation Goals . . . . . . . . . . . . . . . . . . . . . . 114

vii



Page

Phase 2: Align the design and system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Phase 3: Verify design and implementation alignment

through user testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Phase 4: Add adaptive automation to design and

implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Phase 5: Verify design and implementation alignment

through user testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Phase 6: Release implemented System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
The Function-to-Task Design Process Model . . . . . . . . . . . . . . . . . . . . . . 130
Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . 131
An Adaptive Automation System Development

Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Research Domain Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



List of Figures

Figure Page

1. Screen capture from a game of Space Navigator,
pointing out spaceships, planets, trajectories, bonuses
and no-fly zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. The Function-to-Task Design Process Model as
presented in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. A real-time updating individual player modeling
paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. The adaptive automation system design life cycle. . . . . . . . . . . . . . . . . . . . 18

5. Diagram for task allocation in adaptive automation,
adapted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. The Function-to-Task Design Process Model, depicting
the developmental flow and typical revision loops
necessary for design refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7. Legend of notation used in Function Relationship
Diagram (FRD) structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8. Legend of notation used in Task Relationship Diagram
(TRD) structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9. Functional relationship diagram of the Space Navigator
game. See Figure 8 for a legend of notations used. . . . . . . . . . . . . . . . . . . 49

10. Task relationship diagram of the Space Navigator game
with inherent tasks shown, where functions have now
been allocated to human and machine. See Figure 8 for
a legend of notations used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11. Task relationship diagram of the Space Navigator game,
where functions have now been allocated to human
nodes, machine nodes, and adaptive nodes. See Figure 8
for a legend of notations used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12. A real-time updating individual player modeling
paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



Figure Page

13. The six zones surrounding the straight line trajectory in
a Space Navigator state representation and the state
representation calculated with Algorithm 3. . . . . . . . . . . . . . . . . . . . . . . . . 74

14. The percentage of times human conception of “most
similar” trajectory agreed with the trajectory deemed
most similar according to Euclidean trajectory distance
as a function of the average intra-trajectory distance. . . . . . . . . . . . . . . . . 79

15. Average intra-trajectory distance as a function of
trajectory length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

16. The percentage of times human conception of “most
similar” trajectory agreed with the trajectory deemed
most similar according to Euclidean trajectory distance
as a function of trajectory length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

17. Euclidean trajectory distance between generated
trajectories and actual trajectory responses across three
trajectory generation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

18. Graphical representation of the correlation coefficient
for each Other Ship/Zone score with the mean change
in learning values in player models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

19. Graphical representation of the correlation coefficient
for each Bonus/Zone score with the mean change in
learning values in player models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

20. Graphical representation of the correlation coefficient
for each No Fly Zone/Zone score with the mean change
in learning values in player models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

21. A model showing the progression of phases within the
adaptive automation system development life-cycle
(AASDLC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

22. The align design and system phase of the AASDLC,
ensures the system implements the design and the
design properly represents the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

23. The verify alignment through user testing (Pre AA)
phase of the AASDLC, gathers feedback from users to
enable to a better understanding of the system before
AA is added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



Figure Page

24. The add adaptive automation phase of the AASDLC
creates the AA, which consists of an automated
element, AA trigger, and AA interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

25. Feigh et al ’s taxonomy of adaptive automation trigger
types adapted from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

26. The verify AA alignment through user testing (Post
AA) phase of the AASDLC, utilizes user feedback to
ensure the system operates as expected after AA is added. . . . . . . . . . . 112

27. The Space Navigator TRD as captured during phase
two of the AASDLC with rectangles representing
machine functions, ovals representing human functions,
and the C/P blocks indicating inherent tasks which
occur as information is transmitted between the
machine and human; adapted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

28. The ‘select ship’ sub-task of the Space Navigator TRD,
comparing representation before and after the AASDLC
user testing processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

29. The number and type of trajectory draws as a function
of automation type in Space Navigator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xi



List of Tables

Table Page

1. Experimental variable settings for individual player
modeling using Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2. Mean and standard error of the Euclidean trajectory
distances (in SpaceNavigator environment meters)
across all state-trajectory pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3. Correlation of each state representation value with the
mean change in associated state cluster learning values
in player models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4. Mean and standard error for ISA (1-5 scale) and NASA
TLX (0-100 scale) ratings as a function of new
spaceship spawn rates (fast [1 ship/2 seconds] or slow
[1 ship/5 seconds]) and number of no-fly zones present
(2 or 4) during user testing in Space Navigator . . . . . . . . . . . . . . . . . . . . 118

xii



ADAPTIVE AUTOMATION DESIGN AND IMPLEMENTATION

I. Introduction

According to Parasuraman et al. [4], automation is having “a computer carry out

certain functions that the human operator would normally perform”. Whether a task

is automated or not is determined by which entity is performing a given task. There

are many types of tasks. Consequently, automation can take several forms, as the

type of automation is determined primarily by the type of task automated, which fall

into four primary categories: sensors (acquiring information); computers (processing

information); actuators (acting on the environment); and communicators (transfer-

ring processed data with humans) [5]. Since it can take many forms, automation will

heretofore be defined as the performance of a human task by a non-living system.

In many cases the way an automation interacts with a human is set. However,

there exist purposes for which adapting the automation can be useful. According to

Merriam-Webster’s Dictionary, the definition of adapt is“to make fit (as for a new use)

often by modification” [6]. In this regard, adaptation can be useful in helping to not

only move between the different types of automation, but also between different levels

and stages of automation. The idea of developing systems that adapt automations

on the fly was first proposed by Rouse [7] and was later developed further [8]. The

terms adaptive automation, adaptive systems, and dynamic systems have all been

used interchangeably to refer to these changing systems.

The specifics of what adaptive automation entails is cause for some debate. Much

has been written on different types of automation. While some have focused adaptive

automation only on systems where the machine adapts to the environment [9], others

1



have explained that humans can serve as the decision-maker in deciding when to adapt

automation [10]. Some have defined adaptive automation as systems with different

levels of automation and the ability to trigger changes between those levels [4], while

others have focused on looking at the construction of the actual triggers as an adaptive

automation [11]. For the purposes of this research the term adaptive automation refers

to a human-machine system that dynamically adjusts some portion of the system’s

operation to the changing environment in which the overall human-machine system

operates.

The motivation in researching adaptive automation stems from the need for auto-

mated systems that can account for irregularities within the operation of the natural

world, and human beings in particular. Humans can behave unpredictably, and to

a lesser extent the computer systems that automate tasks encounter unforeseen cir-

cumstances. As such, the effectiveness of automations can vary drastically depending

on several variables. If the human operator within a partially automated system is

suffering from a lack of sleep, he may not perform the task at the level for which the

system was designed. Contrarily, a person who is extremely well-suited to a given

automated tasks may become bored with a task that he would be able to perform

more effectively and efficiently than the computer automating it. Therefore, the mo-

tivation for adaptive automation boils down to one of dealing with the variability of

human and envrionment within the context of automated systems.

1.1 Adaptive Automation in Practice

In practice, adaptive automation research has provided tools for operation within

many different fields. These areas range from real-world task performance to artificial

control tasks designed as test-beds. The following systems were designed for other

purposes, but have since been used for AA specific purposes.

2



• aCAMS [12, 13] - The Cabin Air Management System (CAMS) was developed

to study the effects of sleep deprivation. It was later modified to support dif-

ferent levels of automation [14]. The Automation-Enhanced Cabin Air Man-

agement System (aCAMS) provides a simulated version of a spaceship’s life

support system, controlling five sub-systems: O2, CO2, pressure, temperature,

and humidity. Since its creation, aCAMS has been used in several adaptive

automation-based research studies [15–20].

• ALOA [21] - The Adaptive Levels of Autonomy (ALOA) environment was cre-

ated as a testbed for the evaluation of adaptive automation schemes. The sys-

tem was specifically designed around the application area of multiple unmanned

aerial vehicles (UAVs), and the supervisory control thereof. The system allows

for different levels of automation among four operator tasks: weapon release

authorization, image analysis, allocation of UAV to mission objectives, and au-

torouting of UAVs. The system has subsequently been used in a succession of

adaptive automation research efforts [22–25].

• Communication Scheduler [26] - The Communication Scheduler is a two-part

adaptive system to allow for prioritization of communications for reducing cog-

nitive strain on soldiers. This system consists of two parts: a cognitive state

assessor and a communication scheduler. The cognitive state assessor allows

the system to read in information about the subject, while the communications

scheduler then uses this information to determine how to prioritize incoming

communications. The research platform has allowed for further research into

adaptive automation [9, 27].

• MAT-B [28] - The Multi-Attribute Task Battery (MAT-B) was developed as a

benchmark set of tasks for the measurement of workload. MAT-B consists of

3



four tasks, representing the areas of: communications, resource management,

monitoring, and tracking. The battery was designed to model tasks that may

be performed by an aircraft crew. Although it was not designed specifically for

adaptive automation, it has been used in several adaptive automation research

efforts [29–32]. The Shared Attribute Task Better (SAT-B) is another testbed

that is based on the MAT-B, but allows two human operators to interact on

the tasks rather than just one [33].

• MIX Testbed [34] - Similar to many of the other testbeds, the Mixed Initia-

tive Experimental (MIX) Testbed is an environment designed to investigate

how unmanned systems are used and to capture information on automation of

them. The testbed includes an unmanned vehicle simulator, which provides

simulations of UAVs and UGVs. The Operator Control Unit (OCU) system

provides a graphical user interface for interacting with UGVs. Auditory and

visual monitoring tasks are available as well [35,36].

• MultiTask c© [37,38] - The MultiTask c©environment is essentially a radar mon-

itoring task, wherein users are required to eliminate square targets moving to

the center of a “radar scope” display. This must be done before the targets

collide with each other or reach the center of the display, by selecting the target

with a mouse or keyboard. Multitask is meant to roughly simulate a real-world

radar or air traffic control monitoring task. Several follow-up studies have used

the environment in further adaptive automation research [39–45].

• Networked Fire Chief [46] - The Networked Fire Chief is a fire fighting simu-

lation designed to allow research into the psychological constraints involved in

decision-making. The operator is presented with fires that pop up throughout

an area of land, and he must process contributing factors and allocate resources

4



to put out the fires. This system has not yet been used in direct adaptive

automation implementations, but has been discussed as a potential avenue for

future adaptive automation research [47,48].

• N-DART [49] - The Naval Dynamic Allocation Research Testbed (N-DART)

was developed by Navy researchers to help overcome some of the problems that

the MAT-B presents to Naval research. The system helps to automate the

resource allocation stage of Naval Command and Control tasks. The overall

goal of the system is to counter all incoming threats to a set of naval subjects

controlled by the operator. The task is divided into two sub-tasks: a resource

allocation task and a communications task [50,51].

• RESCHU [52–56] - The Research Environment for Supervisory Control of Het-

erogeneous Unmanned Vehicles (RESCHU) Simulator is a test-bed wherein a

single human operator is allowed to control a team of unmanned vehicles (UVs).

These UVs consist of both unmanned aerial vehicles (UAVs) and unmanned un-

derwater vehicles (UUVs). The UVs work together to perform a surveillance

task, locating objects of interest. The simulation environment consists mainly

of three sections: a map window, a payload window, and a status window. One

of the main purposes of RESCHU is to force the operator to execute more than

one task at the same time.

• Robotic NCO [57] - The Robotic Noncommissioned Officer (NCO) Program

was developed to test the feasibility of adaptive automation in an environ-

ment where a single operator controls multiple robotic systems. The environ-

ment includes three main tasks: route-planning with unmanned ground vehicles

(UGVs), target identification using UAV sensors, and multi-level communica-

tions. Further research efforts have made the capabilities of the environment

5



more robust [58,59] and investigated adaptive automation further [60,61].

• SCARLETT [62,63] - The Supervisory Control and Response to Leaks: TARA

at Tsukuba (SCARLETT) microworld was created as a central heating system

control task. Two tasks are included in SCARLETT: controlling the tempera-

ture in an apartment complex central heating system and managing faults that

arise within the central heating system. The types of faults that can occur

include leaks, breaks, and accidents. Experiments used with SCARLETT have

adaptively automated along the line of choice and/or performance of a given

task within the system.

• SIL [64] - The Simulation Integration Laboratory (SIL) is an environment de-

veloped to allow for simulation of single operators controlling multiple UAVs

and/or UGVs in scenarios. The SIL is composed of three main entities: a mil-

itary entities simulator, a 3-D virtual world simulator, and a tactical control

unit (TCU). The testbed allows for a few different monitoring tasks as well as

a classification task [65].

• Simulated UCAV Task [66] - The simulated Uninhabited Combat Air Vehicle

(UCAV) task requires the operator to monitor a set of UAVs as they flew on

a combat mission. The operator was required to prioritize targets and call

for weapons release on targets. Additionally, each vehicles condition required

monitoring and the operator was required to select appropriate maintenance

actions as needed. The UCAV task was designed to test a method for adaptively

adjusting an automated aiding level according to cognitive workload levels [67].

• SKEM [68, 69] - The STEP compliant Knowledge Engine for Manufacturing

(SKEM) represents a knowledge base schema for use across different layers of

factory production. The system was designed to support the ability to create

6



adaptive controls for use in a factory production setting. This is done by pro-

viding a bridge between the management of the production processes and the

execution of the production plans by the production environment.

• Telerobot [70] - Telerobot is a simulated robot to demonstrate how the 10 lev-

els of automation model could be used in designing automations for telerobots.

The specific task environment simulated was telerobot control within a simu-

lated nuclear materials handling task. The goal of the task is to safely handle

plutonium throughout the assigned task. Further research efforts expanded the

telerobot environment into adaptive automation research [71].

Although there are several systems, there are a few key drawbacks to using them.

Some environments provide tasks that are not very complex, such that a computa-

tional system can perform optimally in the environment and making human interac-

tion pointless. Additionally, sometimes the task environmnets are extremely difficult

to understand and therefore do not allow for experiment participants to quickly under-

stand and perform within the environment. Lastly, these environments tend to lack

a competitive nature or other inducements that will encourage participation apart

from research perspectives.

1.2 Research Motivation

Adaptive automation is a domain of research specifically relevant to the U.S.

Department of Defense (DoD) and Air Force (USAF). Organizations at both levels

have created a research emphasis on autonomous systems, with a specific focus on

adaptive automation in several domains. As practitioners aim to fulfill these research

goals, several researchers have created AA systems, as outlined above. However, there

is a lack of a codified formal AA system design and implementation methodology.

7



Air Force Relevance.

The Defense Science Board Task Force on the Role of Autonomy in DoD Systems

released a report on 19 July 2012 [72], aiming to “assist the DoD in identifying new

opportunities to more aggressively use autonomy in military missions, to anticipate

vulnerabilities, and to make recommendations for overcoming operational difficulties

and systemic barriers to realizing the full potential of autonomous systems.” This

report emphasizes the ever-increasing need for autonomous systems specifically within

the DoD, but also within the larger world.

The report singles out the responsibility trade space, where a delegation of re-

sponsibilities between humans and machines occurs. For example, switching task

responsibility in operating unmanned vehicles (UVs) provides a potential manpower

savings, but making this switch shifts responsibility or risk for critical decisions to

a machine. This is a problem because critical decisions are often very complex and

cannot be optimally solved by a machine, especially when life-or-death consequences

are involved. Therefore, “smartly” switching between human and machine operators

within an environment is a burgeoning research area. The DoD’s Unmanned Systems

Roadmap [73] points out that operation of multiple UAVs by a single human would

enable reallocation of current human practitioners.

Switching operational control occurs within multi-aircraft control (MAC). Within

MAC, a single operator controls multiple UAVs requiring the use of human-machine

interfaces that can switch between tasks. To achieve MAC, the handling of a task

must be automated to an extent where the human-assigned tasks can be performed

by a single human across multiple missions [74]. Even within this one area, there are

multiple sub-tasks where task switching must be addressed.

The Office of the US Air Force Chief Scientist [75] also pointed out the need for

automation research, specifically emphasizing that over the next twenty years there

8



must be a movement away from human-controlled task environments to autonomous

systems. In reference to AA systems that deal with switching between human and ma-

chine throughout operation, the report states that “the Air Force, as one the greatest

potential beneficiaries of such systems, must be a leader in developing the under-

lying science and technology principles.” The need for adaptive automation spans

a host of domains including cyberspace infrastructure, distributed networks, train-

ing environments, aircraft operation, surveillance, trust systems, navigation, space

communications, and spectrum warfare.

A common test-bed to investigate AA research priorities provides a motivation for

investigating AA system development methodologies. The Space Navigator test-bed

was created to fulfill this purpose, serving as the test-bed for the automation and

human-machine systems designed for this research. Space Navigator provides a re-

search environment that involves a complex dynamically changing environment, while

allowing for users to understand and grasp the actions of the environment quickly.

Additionally, creating a game-based test environment helped to attract experimental

participants.

Space Navigator is a tablet computer based route creation game, shown in Fig-

ure 1. The game operates as follows. Four stationary planets are present on the

screen. Each planet is one of four colors: red, green, blue, or yellow. Spaceships

appear randomly from the sides of the screen. Each spaceship is red, green, blue, or

yellow. The players must direct each spaceship to the destination planet of the same

color by drawing trajectory lines on the game screen using their finger. Spaceship

then follow these lines at a constant rate. If desired, trajectories may be re-drawn,

to avoid a collision and account for dynamic changes (e.g. appearance of ships and

bonuses, or movement of NFZs).

For the purposes of the experiments completed during this research, game set-

9



tings are applied as follows. The score increases by successfully landing a ship at its

destination planet (+100 points) and by picking up small bonuses (+50 points) that

randomly appear throughout the play area. The score decrements when spaceships

collide, and all spaceships involved in the collision are destroyed (-100 points/space-

ship lost). For each second a spaceship traverses one of several “no-fly zones” (NFZs)

which, every fifteen seconds, move randomly throughout the play area; the score

decrements (-10 points/second). Each game ends after five minutes.

Figure 1. Screen capture from a game of Space Navigator, pointing out spaceships,
planets, trajectories, bonuses and no-fly zones.

System Design and Implementation.

Many of the formal AA frameworks [4, 76] and taxonomies [3] provide insight for

the developer into how to more effectively create an adaptive automation system,

but they address the design and implementation aspects of the process somewhat

indirectly. Although there are informal references to system design throughout the

literature, many of these only provide insights into a specific aspect of the design. It

has been suggested that specific adaptive automation design guidelines could provide

a specific place for further research, as there is a dearth of formal literature addressing

10



the subject [41].

One methodology proposed by Parasuraman [77] includes a six step process de-

signed around the types and levels of automation. The six steps include: Identify

types of automation; identify level of automation; apply primary criteria (mental

workload, situational awareness, complacency, skill degradation) to each level/type

pair identified; set initial specification of types and upper bound of levels of automa-

tion; apply secondary evaluative criteria; and final specification of types and levels of

automation. Another methodology specifically designed to assist in the early stages of

automation interface design, developed by de Visser et al. [78], consists of five steps:

collect observational data of a system; conduct task analyses; construct a quantita-

tive model; create preliminary design; and validate design. This lays out a design

methodology, but more could be done to formalize these methods. A third AA design

methodology deals only with AA triggers to determine when to turn an AA on and

off [11]. None of these design methodologies addresses the entirety of an AA system

to include not only the human and machine elements of the system, but also how and

when they interact.

In addition to a methodology for design of systems there is a further lack of

a codified AA system design and implementation life-cycle. Several considerations

must be made to ensure successful research. Haarman et al. [79] suggest that re-

alistic implementations for AA are extremely important in complex environments,

such as the ones targeted by DoD and USAF research. Several of the AA systems

mentioned above are created in different manners, and may not properly address com-

plex environments that they are meant to represent. To allow for the design of AA

in increasingly complex environments, a codified system design and implementation

concept would help bring the larger AA community together in designing more effec-

tive AA systems that can rely on similar practices to report problems and insights

11



into real-world implementations.

1.3 Research Purpose and Contributions

Automated systems are placed within a human process to achieve some over-

arching goal. The resulting human-machine system aims to achieve this overall goal,

such as having a pilot (human) and an autopilot system (machine) working together

to successfully complete a UAV flying mission. Adding adaptive automation to the

human-machine system requires the definition of a specific adaptive automation goal.

An adaptive automation goal explains why the human and machine are interacting

within the system in an adaptive manner. An AA goal should not define how the

human and machine will interact, but rather explain how adding adaptivity will

help the system achieve the over-arching system goal. This dissertation aims to

show how practitioners can move from a theoretical AA goal to a real-world adaptive

automation system, answering the question “How do we design and implement a

real-world adaptive automation system around a specific adaptive automation goal?”

The process of answering the research question led to the three fundamental con-

tributions of this dissertation. First, the Function to Task Design Process Model

outlined in [1] provides a theoretical framework for pinpointing good locations for

AA within a human-machine system. Second, implementing the specific AA goal

chosen for this research (performing a sub-task similarly to the user) into an actual

automated system led to a novel clustering-based real-time player modeling frame-

work. Third, the process of implementing the automation in an adaptive manner led

to the creation of the Adaptive Automation System Design Life Cycle (AASDLC).

Each of the three major contributions additionally led to other novel contributions

and insights to their respective fields.

12



T he Function-to-Task D esign Process Model. 

·, 
1 ' 

: Determine ':... • • • • • • • • • • • • • • • • • 
:. over-arching : ••. __ • ·., 

~ ~ I , .. ' .· . --7· -. ·. . 1/f'. goa .......... . • ' , •• • • ' .•• . • ~- 2 ' 
,-' ,/ Define '-. t, " ,' l<len ifY '-, / 
·•adaptive · : • . • • 
\ ·-.automation / : .,;., htgh-l_evet ; 
", ' .. states~ .. • ,• .~· • tunc IOOS , ' 

· - ~------· ·( .... <.··· · ·~·-. ___ \.· 
.. --- .. .. . ·.. ' , .. . --.. . " ", ,• : ,.... .. ... 

. 6 .• : : / 3 ', 
,· Separate · '. • • ' · 
~ inherent ; ·.. .. '., ~ \ ~ Decompose ! 
....... ~~~.,..... '\ ····..... .... ... ~··· ........ ,\ ~~~:~ ..... 

. · .... +... •···•· ... :>· · ~--- -.. \ 
: 5 • .: Construct '.. ' 

( Instantiate ', 4 · function : , 
' functions to ' ·., relationship _; •• • • • •' 
..... taskS .... '., _diagram_ •• • 

,-------------------------------------------. 
: ~ . .. ......... : 
l_Q ~~~- _ ?.~~ . ~~-~~ ~~~ _ .. ~~~~s~~~. _! 

Figur e 2. The Function-to-Task Design P rocess Model as presented in [1]. 

The Function _to Task Design Process Model (FTT DPM) for designing systems 

wit h built in AA is a seven step process shown in Figure 2 [1]. In addit ion to the over­

all design process, the FTTDPM provides three unique contributions to t he field of 

adaptive automation system design. First , we explain the process of funct ion instanti-

ation and introduce the concept of inherent t asks that arise through t he instantiation 

process. Next, we propose a set of t hree progressively additive visual diagrams en-

abling better human and machine function instantiation. Finally, we develop five 

analysis tools for isolat ing effective AA points within a human-machine system. 

A function is an action that an element of a system performs to accomplish the 

desired goals or to provide the desired capability; it is not allocated to an ent ity. A 

task is a funct ion t he performance of which has been allocated to a specific performing 

entity (human or machine )- a task is an instantiated function. Instant iating a function 

13 



as either a human or machine task will elicit a single explicit task and some number of

inherent tasks. An explicit task is directly indicated by a previously defined function–

there is a one-to-one mapping between function and task. Inherent tasks arise as

a direct result of function instantiation–as a result of assigning performance of a

function to a specific entity, specific functions that were not previously required now

arise. An inherent task is one that is not necessarily needed by the function, but

becomes necessary for the performing entity once the function is instantiated as a

human or machine task. One of the most important inherent tasks involves passing

along contextual information from one entity to the other, to ensure a proper decision-

making environment. For example, an inherent task when passing pilot control of a

UAV from an auto-pilot back to the pilot is that the machine must alert the human

that control is about to pass to them.

The FTTDPM uses a set of three visual diagrams coupled with the inherent

task concept to identify good locations for adaptive automation within a system.

The Function Relationship Diagrams (FRD), Task Relationship Diagrams (TRD),

and TRD with automation added (Auto-TRD) form a set of additive diagrams that

represent a human-machine system graphically, specifically designed for depiction of

systems with AA. The FRD, created in step four of Figure 2, is the basic represen-

tation of the system design with all of the functionalities the system will have to

perform identified with connecting branches. The FRD is developed into the TRD

during steps five and six in the process and accounts for both the explicit and in-

herent tasks that arise during task instantiation. The resulting diagram shows a

system that represents not only the human-machine system’s functions and allocated

entities (human or machine), but also represents the inherent tasks associated with

switching back and forth between human and machine task instantiation. Step seven

of the FTTDPM further develops the TRD into the Auto-TRD by adding adaptive

14



automation nodes to the design1 depicting locations in the design where control can 

switch freely between human and machine control. 

Step seven in Figure 2 relies on five analysis tools used in conjunction with the 

TRD to help identify locations where the hmnatHnachine system would benefit from 

AA. These five tools include analyzing the number of possible states arising from the 

selection of a specific AA node location, identifying the number of different entity task 

handoffs picldng a specific location for AA would create, determining where clusters of 

functionality are located within the TRD, counting the munber of branches incident 

into and out of an AA node based on the location chosen1 and comparing the increase 

in inherent task load from different AA location choices. These five tools 1 used in 

conjunction, help identify areas where adding AA would be easier within the confines 

of the currently designed TRD. 

Clustering-Based R eal-T ime Player 1\llodeling. 

Response 

-... . -.... .. . -·-··· .. .... _ .. ... ........ ... ... ............ .. ..... .. .......... .. .. ........ .......... .. ... ·· 
F igure 3. A real-t ime updating individu al p layer modeling paradigm. 

To investigate how an AA system is designed and implemented, an AA goal was 

15 



chosen. While most AA research efforts [76, 80] have focused on how the manner

in which the automated portion of the AA performs its assigned task affects the

performance of the human portion of the AA system, the focus we chose investigates

how the manner in which an AA automates a task affects the overall human-machine

team’s performance. Specifically investigating how the similarity or dissimilarity of

an automated aids task performance to that of the current operator affects the overall

human-machine teams performance.

The clustering-based real-time player modeling methodology shown in Figure 3

was created to achieve the AA goal within the automated portion of the AA system

design. The methodology presents a real-time individual player modeling system

that enables an automation to perform response actions in its given environment

that are similar to those that an individual player would have performed in a similar

situation. The player modeling technique presented involves three major phases that

can occur independently of each other or may overlap in a real-time system: (1) create

a generic player model, (2) update the individual player model, and (3) generate a

response using the player model. In addition to the process itself, the player modeling

methodology provides three key contributions to the research area: the player model

updates in real-time, it learns player tendency quickly, and it provides practitioners

valuable insights into how the player interacts with the environment.

The player modeling system automatically updates in real-time by building indi-

vidual player models from a generic player model. A generic player model is created

through an agglomerative clustering of all state-response pairs by state and by re-

sponse. Mapping the state clusters to response clusters and assigning each mapping

a probability based on past game-play generates a player model. The player model is

then made more generic by pruning state and response clusters that are unlikely to

show up in most cases. This player model then updates during system operation by

16



mapping real-world states to the player’s provided responses. These updates shape

the generic model over time to better represent the specific player’s game-play habits.

When applied in the Space Navigator environment, the player modeling method-

ology was able to obtain a statistically significant differentiation between players over

five, five-minute games. This result is useful in that the system is able to distinguish

between players in a relatively short amount of time. The improvements are gained

by utilizing the generic model as a baseline for learning human game-play and then

coupling that with a player model update algorithm that weights states differently

based on the amount of utility assigned to the individual states. The update in-

crement for each state-response pair is based on three traits of the clusters: cluster

population, cluster mapping variance, and previous modeling utility.

The final individual player models provide meaningful insights when compared

against the generic player model. We take the amount of change in the player model

in comparison to the generic model and use that information to create a player model

learning value. Analyzing the learning values for different state clusters in conjunction

with the make-up of the attributes in each cluster’s state representation helps the

practitioner determine how different game attributes influence player behavior in the

environment. Then, the correlation between player model learning values and the

state representations with which they align helps the designer understand what sets

apart individual players. These insights can then be leveraged to improve game design

further.

An Adaptive Automation System Development Life-Cycle.

The final major contribution of this research involves moving from an adaptive

automation design coupled with an automated system to a real-world adaptive au-

tomation system implementation. There have been plenty of adaptive automation

17



Adaptive Automation System 
Development Life-Cycle (AASDLC) 

..... .,..~ .. . .. 

...... ___ .. . 

... · 
I 

• . ... 

/.······ 

.......... 

.... ·· 
\ ·· ......... .. 

: · .. 
: ·. 

/ \ . . ~ 

1/ 
/:.: 

. ..: ... 
,• 

Figure 4 . The adapt ive automation syst em d esign life cycle . 

taxonomies [3, 4, 76] and even an adaptive automation design methodology creat ed 

for t his research (81], but AA research lacks a start-t o-finish system design life-cycle. 

Conversely, there exist several systems design life-cycles (82- 86], but systems design 

research has not developed a life-cycle to address the idiosyncrasies of AA specific 

design and implement ation. The Adaptive Automation System Development Life 

Cycle (AASDLC) is a start-to-finish development life-cycle shown in Figure 4. In 

conjunction with the major contribution of the life-cycle itself, the AASDLC con-

tributes in three ways to the adapt ive automation and system design communit ies: 

(1) incorporating t he AA-centered design principles of the FTTDPM, (2) creating a 

new user feedback spectrum, and (3) developing a novel model for AA triggers. 

18 



The AASDLC is a six phase development life-cycle, through which the progression

is not always linear. The life-cycle consists of two distinct phases, pre- and post-AA,

and involves a series of cycles between aligning design with the real-world system

and verifying the alignment through user testing. Seeking user feedback on design

alignment early in the life-cycle allows the system designer to ensure that the system

is accurately represented to ensure the AA added to the system is situated within

the system well. Gaining user feedback after the addition of AA ensures that the

real-world system aligns with any key elements of the design.

The system design aspects of the AASDLC rely on the principles of the FTTDPM.

The TRD forms the basis for alignment between the design and the real-world system

before AA is added. Then the five tools for determining where to place AA within

the system are used to create an adaptive element within the system that aligns with

the AA goal. After AA is added to the system, the Auto-TRD forms the basis for

follow-up alignment between the design and system.

The AASDLC presents a unique model for developing user feedback. The user

feedback design methodology works along two spectrums of feedback: qualitative vs.

quantitative and directed vs. undirected. The feedback gained from user-testing is

useful beforehand to ensure that the TRD represents the system and that the design

has not overly-influenced by the practitioner’s biases. The feedback devices provide

useful information to the post-AA system by allowing the designer to verify that the

AA acts in the intended manner and achieves the AA goal, and in turn contributes

to the over-arching system goal.

The last contribution of the AASDLC is an innovative way to classify AA trig-

gers that couples Feigh et al.’s [3] AA trigger type taxonomy with a trigger mode.

Trigger modes include discrete, continuous, or complex triggers. These modes allow

the designer to show the many ways that AA can adapt the system to a dynamic

19



environment. By modeling triggers in this fashion, insights from other fields can help

to design more meaningful and capable adaptations.

1.4 Organization

The remainder of this dissertation is arranged as follows. Chapter II shows the

Function-to-Task Design Process Model as published in [1]. Chapter III presents the

clustering-based real-time player modeling methodology as discussed in [87]. Chap-

ter IV provides an overview of the Adaptive Automation System Development Life-

Cycle as presented in [81]. Chapter V presents a discussion of the overall research

findings and suggests possible avenues for future work

20



II. Function-to-Task Process Model

This research begins to answer the research question (How do we design and imple-

ment a real-world adaptive automation system around a specific adaptive automation

goal?) by focusing on the first portion of the question: How do we design adaptive

automation systems? To answer this question, designers need a better understanding

of how tasks are structured within the environment to which they are adding adap-

tive automation. Decomposing the functionalities of an environment and allocating

those functions to performing entities (human or machine) allows sub-sets of tasks

advantageous to adaptive automation to naturally emerge.

This chapter discusses how designers can take advantage of the decomposition and

allocation processes to design effective adaptive automations. The Function to Task

Design Process Model is the culmination of these efforts and is presented here as a

minor adaptation to work published in the International Journal of Human-Computer

Studies,1 with information presented in previous chapters of this dissertation removed.

2.1 Introduction and Definitions

Consumer, commercial, and government systems increasingly apply automation,

particularly in systems which involve time critical decisions and actions. These sys-

tems include manufacturing plant process control [68, 69, 88], aircrew and air traffic

control [89], and remotely piloted or controlled vehicles [25, 61, 90]. Automation can

improve the performance of systems without increasing manpower requirements by

allocating routine tasks to automated aids, improving safety through the use of au-

tomated monitoring aids, and reducing the overall cost or improving productivity

1‘Bindewald, J. M., Miller, M. E., and Peterson, G. L. A function-to-task process model for
adaptive automation system design. International Journal of Human-Computer Studies 72, 12
(2014), 822–834.

21



of systems [8]. Additionally, automation can permit removal of the operator from

particularly undesirable or dangerous environments [91], increasing the safety and

reducing stressors placed upon the operator.

Unfortunately, automation system designers have limited ability to project future

events, and are often unable to adapt when unforeseen circumstances occur. As such,

utilization of a human operator who can adapt to these unforeseen circumstances to

provide system resilience is desirable [92]. With the inclusion of a human operator,

other problems arise. Some include over-reliance on automation [93], placing inap-

propriate levels of trust in the automation [94–96], or losing situation awareness to

preclude appropriate recovery from automation failures [93]. Further, as operators

are not performing active control of the system, they may not practice the knowledge

necessary to operate the system and can suffer from skill atrophy [97]. As a result,

practitioners developed adaptive automation systems to maintain user engagement,

without overloading operators [7].

Automation is the capability “to have a computer carry out certain functions that

the human operator would normally perform” [4]. Knowing which entity will per-

form a given task helps determine whether to automate a task or not. There are

many types of tasks, and consequently, several forms of automation. The categories

of automation can include, “the mechanization and integration of the sensing of en-

vironmental variables; data processing and decision making; mechanical action; and

‘information action’ by communication of processed information to people” [5].

Since, Rouse proposed a dynamic approach to automated decision-making [7, 8],

the field has adopted the terms adaptive automation and adaptive systems to define

the idea of an automated system that can adapt to a changing environment. Within

research, the definition of adaptive automation has been subject to debate. Most

authors would agree that levels or types of automation change in an adaptive system.

22



For example, [9] define adaptive systems as those “allowing the system to invoke

varying levels of automation support in real time during task execution, often on the

basis of its assessment of the current context...invoking them only as needed”. This

view of adaptive automation places the onus of determining the current automation

state on the system. However, others have shown that even the determination of

who ‘adapts’ the system (e.g., the system, the operator, etc.) can fall on a sliding

scale [90].

Within the current context, a system is a combination of hardware, software, and

human operators that work together to accomplish one or more goals. As a focus

of the paper is system design, the term machine refers to the combination of all

hardware and software within the system with which the human operator interacts.

Although the terms function and task are sometimes applied interchangeably [98],

clear differentiation of these terms leads to a better understanding of the proposed

process model. Here, we define a function as an action that an element of a system

performs to accomplish the desired goals or to provide the desired capability. A

function is delineated from a task as the function is not allocated to an entity. A task

is a function allocated to a specific entity, and represents the actions necessary for

the entity to perform the function.

A task’s allocation can be either explicit or inherent. An explicit task is one that

is directly indicated by a previously defined function. Alternatively, an inherent task

arises only once a function is allocated to a specific entity. An inherent task is not

required by the function, but is necessary to enable the allocated entity to perform

the function. For example, the system might require an operator to make a selection,

requiring an explicit action. However, to make this selection, the operator will need to

gather appropriate information from the system or environment and make decisions,

each of which are inherent tasks. Task load then describes the number and difficulty

23



of tasks assigned to human operators, to which they must respond.

Workload refers to the impact of the task demand placed upon the operator’s men-

tal or physical resources. The variability in the task load imposed upon an operator

(and the workload the operator experiences) originates from a number of sources. In

addition to the variance of performance due to explicitly defined workload, the per-

formance of the human operator may vary due to individual factors such as fatigue,

stress level, motivation, and training level [99,100].

This research presents a function-to-task design process model to aid the con-

ceptual design of adaptive automation systems. The function-to-task design process

model creates a set of visual diagrams enabling designers to better allocate tasks

between human and machine. This is achieved through a set of five analysis tools

allowing designers to identify points within a function network where the transitions

between human and machine entities can facilitate adaptive automation. This paper

proceeds as follows. Section 2.2 reviews the design processes currently in place for

adaptive automation systems. Section 2.3 presents the function-to-task design pro-

cess model. Section 2.4 illustrates the function-to-task design process model through

a system design iteration. Section 2.5 presents conclusions summarizing the informa-

tion presented.

2.2 Designing Adaptive Automation Systems

Discussions on the design of manned systems as a tool to aid allocation of functions

or tasks between a human operator and a machine often cite Fitts’ List [101] of tasks

that machines tend to perform “better” than humans and those that humans per-

form “better” than machines. Fitts et al. discussed tasking the machine to perform

routine tasks that require high speed and force, computational power, short-term stor-

age, or simultaneous activities; and further propose leveraging the human’s flexibility,

24



judgment, selective recall, and inductive reasoning to improve system robustness to

unforeseen circumstances. They also acknowledge the limitation of humans to cor-

rectly employ these capabilities when overloaded due to excessive task demands or to

maintain alertness and employ these capabilities when not actively participating in

system control.

One may consider the allocation of functions between man and machine within a

system as a multi-objective optimization, wherein designers optimize some combina-

tion of performance, safety, and robustness as a function of the tasks allocated to each

component. The limitations of system and human capability shape this optimization,

with a significant component of human capability quantified in terms of human work-

load. Adaptive automation system design assumes that the number and difficulty of

tasks performed will vary over time, and the tasks allocated to the human or machine

need to vary to provide the human operator with an appropriate workload.

Human Performance 

Point of Satisfactory  
Performance 

Excellent 

U
ns

at
isf

ac
to

ry
 

Ex
ce

lle
nt

 
M

ac
hi

ne
 P

er
fo

rm
an

ce
 

T1 

T2 

T3 

T4 

T5 

T6 
T7 

Unsatisfactory 

T8 

T9 

Figure 5. Diagram for task allocation in adaptive automation, adapted from [2].

Figure 5 illustrates this concept, which depicts a two-dimensional space which

arranges tasks, T1-T9, based on how well a human operator or the machine can

perform them under reasonable task load. As shown, performance by either system

can range from unsatisfactory through excellent [2]. We should allocate tasks, such

25



as T1 or T8–which one entity (human or machine) can perform more satisfactorily–

to the better performing entity. However, any task that either entity can perform

beyond the point of satisfactory performance, we can reasonably allocate to either

human or machine.

If there was no constraint on resources, one could maximize performance of the

overall system by allocating tasks below the 45 degree line to the human and tasks

above to the machine. However, resource constraints force a shift in the location of this

line. For instance, assuming workload limits on human performance and unbounded

machine resources might induce the designer to shift the dividing line lower in the

plot, decreasing human workload and allocating additional tasks to the machine. On

the other hand, if users’ performances improve by increasing their engagement with

the system, raising the dividing line allocates more tasks to the human. Therefore,

adaptive automation effectively requires the system to permit this allocation line to

shift up and down within this plot, allocating fewer or greater numbers of tasks to

the human operator.

Automation Taxonomies.

Taxonomies for adaptive automation have been proposed to accommodate the

complex design space present in adaptive automation systems. [3] indicate that mod-

ifying the allocation of tasks among humans or machines can affect operator workload.

However, modification of task scheduling, interaction required between the operator

and other system elements, or the content of any interaction can also affect operator

workload. Although not explicitly captured, these modifications may involve sys-

tems with multiple machines or multiple humans [102]. Considering the interaction

between an individual operator and a machine, [4] proposed a model for describing

levels of automation that builds upon the work of [103] to discern between the types

26



and levels of automation. The model delineates the types of tasks performed based

on the four-stages of human information processing: sensory processing, perception/-

working memory, decision making, and response selection. Within these four stages,

they expand upon the ideas of Sheridan and Verplank and codify them further into

a 10-point scale describing the levels of automation, ranging from “1. The computer

offers no assistance; human must take all decisions and actions” all the way to “10.

The computer decides everything, acts autonomously, ignoring the human.”

[76] proposed four core human functions that a system could automate indepen-

dently of one another, including: monitoring, generating alternatives, selecting alter-

natives, and implementing the selected alternative. This framework assigns each of

these four tasks to either the human or machine (or both in some cases) and enumer-

ates the level of automation between fully autonomous and fully human-implemented,

providing a two-dimensional space over which to define automation. Each of these

classification schemes permits the differentiation between intermediate levels of au-

tomation, explicitly defining which human task a given level automates. Each model

aids the creation and classification of automation states for tasks the human or ma-

chine can perform, helping the system designer determine “what” to automate and

“to what extent”(i.e. level of automation). Although designers can apply “level of

automation” models to any system employing automation, they are important in sys-

tems employing adaptive automation as they permit the designer to determine what

part of and how to automate a task so that changes in automation level can be clearly

described.

Although the adaptive automation taxonomy [3] proposes does not fully overlap

the automation taxonomies provided by either [4] or [76], the taxonomies are not

independent of one another. Feigh et al. uniquely highlight the fact that not all tasks

are time critical, and systems can reprioritize them during periods of peak workload.

27



They also discuss the allocation of tasks between humans and machines–alluding to

various levels for automation of tasks that include selection or implementation of

alternatives. Additionally, they contend that automation of generating alternatives

and monitoring requires automatically generated information displayed to the human

operator, forcing a change in the interaction and content of interaction. Each of

these methods, therefore provides a different way to classify and consider the effect

of changes in autonomy on operator workload.

Human-Machine Interaction.

The need to provide effective communication between the human and machine im-

pedes human interaction with automated systems. In some cases–such as flight control

automation–the design of this interaction can have life-or-death consequences [41,104].

Unfortunately, this interaction can become increasingly complex in systems employ-

ing adaptive automation. William Rouse’s analysis of human-machine interaction

within a dynamic system is a seminal article in this field [8]. Rouse shows the differ-

ent forms of communication with the system as a set of five interaction loops. The

first two loops, in which it is possible that no communication is required, represented

manual control and completely automated control. In the third loop, wherein he

coins the term overt communication, the human and machine operators of a sys-

tem directly communicate information about their tasks. The human operator must

take explicit actions to control the machine, and the machine must explicitly pro-

vide information. The human operator must consciously read, listen to, or otherwise

receive this information. The last two loops represent more subtle communication

which typically occurs among humans; covert communication, with the fourth loop

representing covert human to machine communication and the fifth covert machine-to-

human communication. Information communicated indirectly–which might include

28



state information–characterizes covert communication. The timeliness of a response

from a teammate, where hesitancy in response signals uncertainty and fast authori-

tative response indicates certainty, provides an example of covert communication.

Unfortunately, communication errors occur between human operators and ma-

chines as the machine can fail to communicate critical state information, the infor-

mation leading to the selection of a critical state, or less direct information, such as

the certainty of this information [104]. Recent research focuses on improving covert

communication from the human to the machine through the use of psychophysiolog-

ical measures, such as electroencephalography (EEG), electrocardiography (ECG),

electrodermal activity (EDA), electromyography (EMG) [9,79,105] or behavioral mea-

sures, such as eye gaze patterns. Such measures have the “potential to yield real-time

estimates of mental state” [105], thus allowing the machine to gain information re-

garding the state of the human operator.

The infeasibility of communicating all automated tasks from a machine to a hu-

man aside, the human in an automated system requires enough information to permit

appropriate situation awareness. Since the human operator assumes control in the

event of a mishap or in order to make a critical decision, the human needs an un-

derstanding of the current system and environment state. Several research efforts

devote effort toward finding an appropriate balance between providing enough infor-

mation for situation awareness and overloading the human operator with informa-

tion [5, 41, 76, 106–108]. Further, all communication will affect the user’s workload,

potentially resulting in overload conditions. However, the relationship between how

humans attend to, receive, process, and act upon information creates complexity, and

the interaction influences the human operator’s perceived workload [106].

The manner in which feedback is given influences the resulting system. For ex-

ample, Manzey et al. demonstrate that users are much more likely to develop a

29



proper level of trust with a system when the system gives them negative feedback

loops rather than positive ones [107]. Further issues, such as how to design a system

to manage interruptions in a socially acceptable manner and analyzing the positive

and negative consequences of automating the interruption management task [9], are

important. The idea of etiquette flows naturally into the concept of trust, directly

impacting the human operator’s trust of the system.

While the design of the human-machine interface can be complex, this interface

requires an understanding of the information that the human and the machine must

communicate to facilitate task completion. The importance of this information neces-

sitates its presentation in a way that does not overload the operator and recognizes the

fact that the human operator will not necessarily receive all information the system

provides.

User-Centered Design and Task Analysis.

User-Centered design [109] has evolved to aid the design of systems including a

significant user interaction component. This process often involves the steps of: 1)

establishing a vision for the system, including an initial system concept and business

objectives; 2) analyzing requirements and user needs to understand how users perform

the tasks within the boundary of the system concept and the context of use; 3)

designing for usability through conceptual and detailed interaction design, including

prototyping; 4) evaluating the system, which can involve early focused deployment

and evaluation of the system; and 5) applying learnings from the evaluation to provide

feedback and improvements to the overall system design [110]. Each of the steps in this

process, as well as the overall process, are conducted iteratively until a desired level

of usability is attained. During the development of complex systems, this process can

involve individuals from numerous disciplines, to include systems engineering, human

30



factors, software design, human-computer interface design, and information system

management, all of whom can apply different design and evaluation techniques during

the vision development, analysis, and design phases.

Tools for capturing the requirements for a design within the systems engineering

community include forms of the structured analysis and design technique (SADT) [111],

as well as the Systems Modeling Language (SysML) [112]. SADT primarily focuses

on the documentation and decomposition of the process to be employed by the ma-

chine during design. SysML was developed from the Unified Modeling Language

(UML) [113], which was originally developed for the design of software systems.

SysML includes a number of tools to capture and communicate the vision for the

system, analyze requirements, develop conceptual and eventually detailed designs,

and to associate test procedures and outcomes, permitting verification and validation

of the system requirements. These tools can be applied in either a descriptive fash-

ion, describing an existing system when analyzing requirements, or in a prescriptive

fashion, documenting vision, requirements, and design of the system under design.

While these tools focus primarily upon design of the machine, certain tools, including

use case and activity diagrams can capture human interaction with the system.

Within the human factors community, Hierarchical Task Analysis (HTA) [114,115]

is commonly applied to systematically capture and decompose human activities to

describe processes that are commonly applied by the human. Information from these

analyses can be depicted in a number of forms, one method of particular interest is

the Operational Sequence Diagram (OSD) [116]. The OSD captures the flow of infor-

mation between a human and machine, indicating the timing, direction and modality

of information flow during each exchange between a human and the machine. More

recently other task modeling languages have been developed. These tools include the

ability to model tasks performed by groups of individuals, for example Groupware

31



Task Analysis (GTA) [117], as well as methods to assess differences between human

and machine knowledge structures, e.g., Task Knowledge Structures (TKS) [118].

UML or SysML tools, can be applied to model the results of a task analysis. For ex-

ample, use cases may represent an informal task analysis structure [119] and activity

diagrams can capture tasks as well as information flow between entities [120].

Besides these tools, task description languages extend descriptive task analysis to

provide prescriptive tools useful in specifying the design of the human interface. The

Goals, Operators, Methods, and Selection Rules (GOMS) method [121] attempts to

define the system through a set of goals, decomposing goals, determining how users

perform tasks to achieve these goals and assessing the method of interaction on user

performance. Other tools, such as DIANE+ [122] are useful during specification and

user interface design [123]. ConcurTaskTrees (CTT) [124] uses a hierarchical task

structure with a focus on defining a number of different types of temporal relationships

between tasks to aid the design of the user interface.

These tools can be geared towards certain application environments. For example,

AMBOSS [125] is primarily relevant to understanding human error in safety critical

systems. Similarly the Functional Resonance Analysis Method (FRAM) [126] is pri-

marily concerned with utilizing performance variability as it pertains to achieving

desirable (or dampening undesirable) outcomes. Tools have also been developed in

the management information field for capturing and designing workflows in complex

business processes. Examples of these workflow languages are Yet Another Workflow

Language (YAWL) [127] and Web Services Business Process Execution Language

(WS-BPEL) [128].

In the context of the current research, a task model of particular interest is HAM-

STERS and recent extensions to this model [129,130]. Similar to CTT, HAMSTERS

provides notation for indicating machine tasks separately from human tasks when

32



decomposing a goal or high level function (i.e., abstract task in the HAMSTERS

nomenclature). Each of these modeling languages additionally provide notation for

interactive tasks, tasks performed by the human or system to facilitate interaction

between the two entities. By creating different hierarchical networks with different

tasks allocated to human or machine, these methods can be used to assess various

static automation strategies. Further, HAMSTERS has recently been extended to

permit the modeling of not only the hierarchical task relationship but the temporal

sequencing of these tasks.

Existing task modeling tools are primarily designed for systems with static rather

than adaptive automation. As a result, many of these tools do not provide tools

to move across the function-task distinction described previously. In their designed

context, these tools and methods typically do not explicitly provide ways to move from

functions with an unassigned operational entity (e.g., machine or human) to tasks

with an operational entity assigned. Therefore, a process model with a task model

is proposed that aids the designer when determining functions to statically allocate

to humans and machines, as well as functions to dynamically allocate between the

human and machine.

2.3 Function-to-Task Design Process Model

This section presents the proposed process model for allocating functions to enti-

ties (e.g., human or machine) that leads to adaptive automation allocations. Figure 6

graphically depicts the function-to-task design process model. The function-to-task

model usually proceeds in a linear fashion, as indicated by the solid bold arrows in

Figure 6. In some cases, completing steps in the process will force the design back

to a previous step for revision; likely locations for revision steps are indicated by the

dashed arrows in Figure 6. It is likely that a proper decomposition of the system will

33



not occur on t he first attempt and, therefore, this process can become iterative . 

.. t_ 
: 1 ' 
: Deteonine ':.. •• • • • • • • • • • • • • • • • 

-<~:7:~ :--.. ).over~hing.1...... • •• ···· · · - ••• \ 
/ ,' ", ·r·· '.. .. .. .. ' ~, 2 \ : 

; : Define '. • -. .... : lden ify ' . .' 
' 'adaptive ' : • . • • 
~. \ automation/ ,' .Y. h1Qh~.evet ,' 
'. • • states • • • : • • • '. func IOOS : 

· .. .. .. . ·· .. ·· .. ~·- .... \··· 
~-- -- · \ / .. ··· 

~ .. .... " ·~ ~. ,:' .. : ...... ..... .. 
/ # 6 . . '. f • ', 

:' Separate ', \ : : ~ Oeco~e ': 
·. inherent t · · •. \~ ~ \ ... tunc ions / 

·· .... ~., .. . }········ ............ ::--······-;· ... ,.· 
·. -..... .. > .. - ~--.... .. . : 

' 5 · / Construct \ : 
; Instantiate ', ~ func ion : : 
•, functions to ; ••. rela ions hip ,; •••••• • 
••• taskS • ·•• . ' •• _diagram_ •• • 

Figure 6. The Function-to-Task D esign Process M o d el, depicting the developmental 
flow an d typical r evis ion loops n ecessary for design refinem ent . 

St ep 1: D etermine Over-Arching G oal. 

In the first step, the designer determines the goal(s) of the system. T he over-

arching goal should answer the question, "What is the system trying to achieve?" 

Any predeterminat ion as to how the task must be accomplished should be excluded. 

For example, a goal to "obtain milk through a purchase," contains no pre-conceived 

notion of how to purchase t he milk. The overall goal should be distilled to only its 

essential elements- t hose requirements that are unavoidable without making the scope 

over-expansive. For example, obt aining milk is a less exclusive goal than purchasing 

milk. However, broadening the goal beyond solut ions under serious considerat ion is 

counter-productive (e.g. , we would not expand t he goal of purchase milk unless we 

34 



would consider alternate methods of obtaining milk).

Step 2: Identify High-Level Functions.

The second step is to identify the functions that must be performed to achieve the

goal(s). The question to answer at this stage is, “How do we achieve the over-arching

goal?” The functions at this stage should be high-level, and, depending on the goal,

could consist of only one or a small number of functions. At this point, the designer

has not allocated these functions to performing entities. Therefore, the high-level

functions must be defined such that they can be allocated to any available entity.

Step 3: Decompose Functions.

Functions are composed of sub-functions in a modular or hierarchical fashion. The

high-level functions from step two are decomposed into sub-functions until they reach

the atomic function level. Atomic functions are functions that can only be performed

by a single entity (e.g., it cannot reasonably be decomposed into more than one

function where one or more of these functions would realistically be allocated to a

human and another would be allocated to a machine). Further decomposition of an

atomic function is not desirable, making the determination of automation state a

discrete decision. Consequently, all functionality for which the system must account

falls under a high-level function. The complexity of a given function depends on the

number and interrelationships of its sub-functions.

All non-atomic functions are composed of lower-level functions. There are many

proposed methods for decomposing a function, including methods from structured

analysis, such as Integrated Computer Aided Manufacturing Definition for Function

(IDEF) Modeling [131]. The designer should perform decomposition until functions

are indivisible between multiple entities, resulting in atomic functions. In practice,

35



decomposing each function to the point where it is indivisible is not necessary, but in-

stead the designer should decompose each function to the point at which it is impracti-

cal to allocate a portion of a function to two separate entities. With system evolution,

it may be necessary to readdress the function decomposition as functions which are

impractical to allocate to separate entities may change as technology evolves.

The actions taken in step three repeatedly address the question, “Can more than

one entity perform function x?” For the purposes of system representation, step

three should produce a set of nodes. Although graphical depictions of the atomic

functions (such as IDEF diagrams that maintain knowledge of the hierarchical de-

composition [132]) are useful, one must take care when naming the functions to insure

that all unique functions have unique names.

Steps one through three are similar to the hierarchical task breakdown of methods

such as HTA or GOMS but do not include allocation of the detail of user interaction

inherent in an allocated function. For example, atomic functions are similar to the leaf

nodes created in a hierarchical task decomposition, but functions remain unallocated

between human and machine. Therefore, the designer should take special care to

ensure an allocation-free breakdown during the first three steps of the present model.

Step 4: Construct Function Relationship Diagram.

After identifying the atomic functions, the functions are transformed into a net-

work by exploring the relationships between the atomic functions. To complete a

function, a subset of its atomic functions must be completed in a pre-determined

order, as information generated by a function will be an input to other functions.

Further, it is common for an atomic function to reside within multiple function hier-

archies. These relationships are depicted in a function relationship diagram (FRD)

wherein the atomic functions represent nodes and the information to pass between

36



nodes are represented by the connecting arrows. The resulting network provides a

temporal ordering similar to that introduced for HAMSTERS [130] for a task net-

work. A function is either mandatory (represented by a solid border in the FRD) or

optional (represented by a dashed border in the FRD). Optional functions are those

that may need to be performed within some task instances, but not others. Figure 7

shows a legend of the different structures used in the FRD.

Optional 

Function 

Node

Mandatory 

Function 

Node

Mandatory 

reliance 

relationship

Optional 

reliance 

relationship

Figure 7. Legend of notation used in Function Relationship Diagram (FRD) structures.

A large number of temporal relationship types can exist between functions. How-

ever, each pair of atomic functions can have two possible relationships: dependent

or independent. Dependent relationships arise when the completion or product of

one task directly influences the other. Dependent relationships are represented by an

arrow in the FRD. A function is independent of another when it has no reliance or in-

fluence on the completion of the other. All non-connected functions are independent

from each other.

Similar to the functions themselves, a relationship is either mandatory (repre-

sented by a solid arrow in the FRD) or optional (represented by a dashed arrow in

the FRD). A mandatory relationship implies that one function necessarily leads to

37



the next, while an optional relationship implies a set of circumstances that could

avoid this relationship.

Using mandatory and optional functions and relationships, several more-complex

relationships, such as those referenced in [124], can be represented. For example,

interleaved relationships can be represented as two separate flows within an FRD,

with the two functions each with an optional relationship with another common node.

An iteration relationship is represented by an optional relationship arrow looping the

function node back on itself. The complex relationships are not represented directly,

because decomposing these relationships to a lower level allows for further freedom

in design.

Multiple relationships may flow into or out of a given node. If an atomic function

does not connect to other atomic functions from the higher-level function from which

it was derived, the function decomposition should be re-addressed, as this condition

violates the rules of the function decomposition. The diagram at this point should not

involve the instantiation of function performers (i.e. it is still a function relationship

diagram and not a task relationship diagram).

Step 5: Instantiate functions to tasks.

In step five, the system designer allocates each function to an entity: human

or machine. Specific instances of humans and machines are not assigned, we are

concerned only that a human or machine is performing the function, not which human

or machine performs it. In fact, to simplify the current discussion, it is assumed that

only one human operator is present in the system under design, although this concept

could be refined to permit the inclusion of multiple humans interacting with one or

more interconnected machines. This step sets a baseline for the states of automation.

A task relation diagram (TRD) that demonstrates the flow of information from one

38



entity to another results from this step. 

The first step in task instantiation involves induced assignments. Some constraint 

may mandate the instantiation of a specific function, or set of functions, to a specific 

entity. Induced assignments can come from rules, capabilit ies, available resources, or 

other avenues, but must be addressed no matter the reason for their inclusion. These 

are assigned first , before any ot her instantiat ions are made. Examples of induced 

functions include decision nodes in systems where humans hold final decision authority 

or a complex calculat ion that a human is incapable of performing and a machine must 

perform. 

Once the induced assignments are made, the designer can address t he more flexible 

assignments. The adaptive automation t ask allocat ion model discussed in 5 enables 

the determination of which tasks to assign to a human or machine. By using the model 

demonstrated in F igure 5, tasks can be assigned to t he entity capable of performing 

the function wit h maximum proficiency. Although this model may provide insight 

into which function nodes to instantiate to which entity, it can also draw attention 

to nodes t hat are not clearly favored t o one entity or the other. The result ing TRD 

should indicate each node as human or machine, as shown in the legend cont ained in 

Figure 8. 

( ) Human 
Task 
Node Mandatory 

reliance 

I I 
relationship 

Machine 
Task Optional 

Node ·················-~ reliance 
relationship 

r J Adaptive 
Task Mandatory 
Node Node 

~ Inherent Node r······-······ ........... : 
(Communication) Optional 

~ .............................. : Node 

cv Inherent Node 
(Perception) 

Figu re 8. Legend of notation u sed in Task R elation ship Diagram (TRD) st r u ctures. 

39 



Step 6: Separate Inherent Tasks.

At this step, all functions have been allocated to entities. The resulting TRD

consists only of explicit tasks the atomic functions specify. Completion of the task

allocation consists of specifying the inherent tasks. Inherent tasks are those tasks

that present themselves as the product of a specific task instantiation. However,

these inherent tasks can also result from the interactions between the explicit tasks

or specific resources available to the system.

The information exchange between entities during a task handoff is the primary

source of inherent tasks. Once the designer assigns a task to a machine or human, a

set of new complexities emerge through the task relationship diagram: task handoffs.

There are four types of task handoffs possible: human to human, human to machine,

machine to human, and machine to machine. For the purposes of an adaptive au-

tomation system, task handoffs that cross between human and machine are important.

A human-to-machine or machine-to-human task handoff requires two inherent tasks

that are not present in the underlying functions: communication of the information

by the losing entity and perception of the information by the gaining entity.

Communication of information requires the current performing entity to format

the information such that the next entity understands it. For example, a machine

that just completed a movie recommendation search task must ensure that it com-

municates the recommended films to the human before the human can complete the

subsequent movie selection task (i.e., displays this information on a screen). On the

other end, perception involves the next task performer’s ability to obtain and interpret

the information communicated to permit subsequent task completion. It’s important

to make the inherent task nodes in the task relationship diagram visually distinctive.

This distinction permits complex task relationships to become more apparent. Step

six produces a complete TRD similar to that produced by the previous step, but

40



including both explicit and inherent tasks. As shown in the legend (Figure 8), the

communication and perception tasks of an inherent task are represented by the “C”

and “P” nodes that will appear in pairs.

At this point, the designer may find it useful to reiterate through the process

to ensure that the diagram truly represents the desired process and system. After

this stage, an initial allocation exists. Modeling or prototyping tools can then be

used to determine if the human or humans assigned to operate within the system are

capable of performing the tasks required from them during typical system operation

while having high enough workload to remain engaged with the system. If not, steps

five and six are revised until the design attains a desired level of workload. To

reduce workload, for example, the human can give a task involved within a complex

relationship within the TRD to the machine.

Step 7: Define Adaptive Automation States.

The inherent tasks of communication and perception provide one of the most

important steps in designing an automation system. When the designer adds adaptive

automation to the system, an understanding of cognitive task handoffs is crucial. The

selection of a set of atomic tasks, or groups of tasks, in the TRD to become adaptive

nodes makes the automation adaptive, and consists of identifying nodes that can

switch between human and machine instantiation based on some pre-defined trigger.

Selecting a given node as an adaptive node, adds complexity to the overall system.

As a node switches from static human or machine to adaptive, the number of handoff

types needed can double for each outgoing connection. For example, a human node

connected to a machine node requires one type of handoff, a human node connected

to an adaptive node requires two, and an adaptive node connected to an adaptive

node requires four. It should be noted, however, that this added complexity only

41



occurs for nodes that are independently switched within the design. It is possible

for a group of nodes to always be switched in concert with one another as a cluster,

in which case, only the number of connections between this group of nodes and the

nodes they connect with are doubled.

Step seven finalizes the selection of adaptive nodes. As shown in the legend (Fig-

ure 8), adaptive nodes are represented by a shape that combines those of the human

and machine nodes. Choosing adaptive nodes is ultimately a subjective task. How-

ever, an analysis of the TRD can help make these decisions easier and more grounded.

Five analysis tools include: determining the number of possible states, node cluster-

ing, task handoff analysis, branch counting, and inherent task load comparison. By

iterating through these tools, an adaptive automation system emerges.

Number of possible states.

Once the designer selects adaptive nodes, they must readdress the complexity and

handoffs created through the selection. One way to assess complexity involves deter-

mining the number of possible automation states. For each independently adaptive

automation node in the relationship graph, two possible states exist: human and

machine. Therefore, the number of possible states equals 2x, where x is the number

of adaptive nodes in the current design. Fewer independently adaptive nodes means

exponentially fewer possible states. Within the TRD, one can simply count the num-

ber of desired adaptive nodes and plug it into the above equation. This is a rough

approximation of the potential challenges.

Task handoffs.

Related to the total number of possible states, one way the TRD can help analyze

the designed system is through an analysis of the task handoffs–specifically the num-

42



ber of different-entity handoffs. In each possible case where a machine hands off to a

human or human to a machine, count one handoff. In the case where a node is set

as adaptive, this implies that a handoff from an adaptive node to another adaptive

node counts twice, while an adaptive to non-adaptive node handoff will count once.

This handoff count suggests the number of nodes where task load shifts from one

entity to another. By focusing on these nodes, potential bottlenecks appear due to

certain handoff tasks taking place more often than at other locations. Highlighting

these tradeoffs allows the system designer to visualize the locations where inherent

tasks–specifically those associated with communication and perception, as described

in Section 2.3–reside.

Node clustering.

Functions clustered based upon the degree of the edges in and out of a given node

tend to provide similar or highly inter-related functions. Therefore, automation of a

cluster as a set can often be achieved with greater effect than just automating one

function in the set. Conversely, the designer could also instantiate all of the tasks in

a cluster to a human, since the information associated with the multiple edges will

not need to be exchanged.

An example of this would be in piloting an aircraft. Although the “takeoff func-

tion” contains many lower level functions, there are many complex groups of functions

within it that naturally group together to ensure a proper amount of situation aware-

ness, where the necessary information is provided through the right kinds of feedback.

Within the TRD, an adaptive node cluster can be represented by a large adaptive

node surrounding a set of tasks. This implies that all of the tasks within the adaptive

node cluster will all always have the same allocation. This allows for adaptation with-

out increasing the number of states exponentially. Additionally, since a hierarchical

43



notation was not kept in Steps 1-4, the TRD now has flexibility to cluster in unique

ways not easily perceivable through the hierarchical breakdown.

Branch counting.

Branch counting refers to the idea of determining the number of other atomic

tasks to which one specific atomic task connects. A task that influences or is influ-

enced by a large number of tasks makes automation more difficult. This is because

changing a node to adaptive requires an inherent communication/perception node

to each incoming and outgoing relationship. For example, forming a node with one

outgoing relationship and one incoming relationship adaptive creates two new com-

munication/perception nodes, while doing the same to a node with one incoming

relationship and four outgoing relationships creates five new communication percep-

tion nodes.

Tasks that have large branch counts can often make good candidates to be mem-

bers of an adaptive node cluster. Conversely, single branches within a TRD can often

indicate good locations to place adaptive nodes, as the inherent task load is likely

smaller. Although some individual task handoffs may be very difficult, branch count-

ing a TRD provides a good snapshot of where there will be a large number of task

handoffs that the designer may not have foreseen.

Inherent task load comparison.

An inherent task load comparison provides another means to analyze the effec-

tiveness of design options. This consists of a comparison of the relationship diagrams

created when the TRD instantiates one function as a human task versus when the

TRD instantiates the same function as a machine task. The primary difference as a

result of this reallocation is the number of inherent tasks that are added or subtracted.

44



A comparison of the two instantiations helps to visually communicate inherently un-

derstandable design decisions.

2.4 Function to Task Process Illustrated

The function-to-task process model is illustrated here by designing an adaptive

automation system to aid a user during play of Space Navigator. The result of

the process is an allocation of tasks to aid adaptive automation system design. The

dynamism of elements within Space Navigator (e.g. movement of no-fly zones, random

appearance of new ships, etc.) do not allow for creating an “optimal” automated

player. Because the game is relatively simple in its mechanism while still difficult for a

machine to perform optimally, Space Navigator is a good environment for illustrating

the process model. Each of the seven steps of the Function-to-Task Design Process

Model (Figure 6) is addressed in the following sections.

Step 1: Determine Over-Arching Goal.

To fulfill Step 1, we ask the question “What are we trying to achieve?” The goal

of a Space Navigator player is to score the most possible points. In the present case

this is a simple task, since the goal is clear from the rules of the game. However,

in other situations a goal may be more difficult to define. For this reason, the loop

from Step 2 to Step 1 may provide further insight and refinement for more complex

systems.

Step 2: Identify High-Level Functions.

With the goal in hand, we ask “How do we score the most possible points?” This

helps identify the high-level functions as the manners in which points change. Four

high-level functions become apparent:

45



1. Move spaceship to intended target planet.

2. Pick up bonuses.

3. Avoid collisions with other spaceships.

4. Avoid traversing no-fly zones.

Step 3: Decompose Functions.

Answering the question, “Can we further divide function x?” allows further func-

tion decomposition. After applying this decomposition we obtain the following list of

atomic functions:

1. Function 1: Move spaceship to intended target planet.

• Determine the best ship to draw route.

• Identify destination planet of selected ship.

• Identify if ships have routes already.

• Create a set of possible routes.

• Select a route.

• Draw a line from selected ship to destination.

2. Function 2: Pick up bonuses.

• Identify all available, non-selected bonuses.

• Identify destination planet of selected ship.

• Determine if route change to pick up bonus is worth points gained.

• Determine if selected ship has a route already.

• Adjust route to pick up bonus.

46



3. Function 3: Avoid collisions with other spaceships.

• Detect likely collisions.

• Identify destination planet of selected ship.

• Determine if selected ship has a route already.

• Determine if route change to avoid collision is worth points gained

• Adjust route to avoid collisions.

4. Function 4: Avoid traversing no-fly zones.

• Identify no-fly zones.

• Identify ships headed toward a no-fly zone.

• Identify destination planet of selected ship.

• Determine if selected ship has a route already.

• Determine if no-fly zone traversal is worth lost points.

• Adjust route around no-fly zone.

This atomic function list demonstrates two concepts previously discussed in Sec-

tion 2.3: the overlap of specific atomic functions and the circumstance-specific nature

of atomic functions. Some atomic functions in the above list appear in multiple lo-

cations within the hierarchy. For example, the atomic function “identify destination

planet of selected ship” appears in all high-level functions. It is the same function and

named the same in every case. Secondly, a practitioner may consider the atomic func-

tions listed above as more complex depending on the interpretation of the process.

For example, under the avoid no-fly zones high-level function, the atomic function

“Determine if no-fly zone traversal is worth lost points” could be considered a non-

atomic function made up of sub-functions such as “determine the number of potential

47



points lost,” “determine amount of time added,” “determine increased collision like-

lihood,” etc. However, the designer must ask whether they would consider dividing

these tasks among human and machine entities or whether they would always assign

them to the same entity. An important note from Step 3 is that moving further along

the Process Model may provide insight into the proper level to end Step 3. This is

represented explicitly by a revision loop from Step 4 back to Step 3 in Figure 6.

Step 4: Construct Function Relationship Diagram.

We now produce the functional relationship diagram by analyzing each unique

atomic function in relation to all of the other functions and assigning relationships

(dependent or independent) based upon the transfer of information from one function

to another. The end result of this relationship mapping is the function relationship

diagram shown in Figure 9. The creation of this diagram illustrates overlapping

atomic function instances, optional versus mandatory functions, and the flexibility

provided for structuring the functions by removing the hierarchical structure.

In this step, there are a few instances where multiple higher-level functions contain

the same atomic function (e.g. “identify destination planet of selected ship”). Only

one node in the functional relationship diagram represents these functions. However,

these functions interact with many different functions. The “identify destination

planet of selected ship” function directly influences three separate functions. There-

fore, functions that overlap multiple higher-level functions provide potential bottle-

necks in the relationship diagram. That is, the information these functions produce

must be available to any human or machine entity to permit subsequent functions’

performance.

Optional and mandatory functions and relationships are all represented. For ex-

ample, we need to identify potential collisions (mandatory function) and must do it

48



Figur e 9. Functional relationship diagram of t h e Space Navigator gam e. See Figure 8 
for a legend of notations used. 

before adjusting our route for them (mandatory relationship) , but this information 

may not necessitate a route adjustment (optional function). Then the ensuing ad­

just ment is made in one of two ways depending on whether the selected spaceship 

already has a route (optional relationship). 

Relationships that seem compart mentalized in the function decomposition can ap-

pear highly interconnected in the relationship diagram. The four high-level funct ions 

identified for the Space Navigator game are separated distinctly in the funct ional 

decomposition in Step 3, within the hierarchical st ructure. However, when the hi-

erarchical struct ures are removed, the sub-functions provide a system that cannot 

be easily divided along the lines of the previously defined high-level functions. This 

49 



change in perspective can also influence a different understanding of the high-level

functions themselves. For example, looking at the resulting FRD a designer could

potentially conclude that the tasks of “spaceship selection” (the upper half of the dia-

gram), “action decision” (the bottom half of the diagram), and “action performance”

(the final function) are the higher-level functions. This demonstrates how the FRD

provides a revision path that can lead the practitioner back to Steps 2 or 3 for further

analysis.

Step 5: Instantiate functions to tasks.

The design goal in this example is to apply automation to aid the user when

interacting with this game where the assumed default state is that the human operator

will perform all functions. Therefore, the goal of the function allocation in this

particular example is to identify alternate automation states, which will permit an

operator to perform well in the presence of exceptionally high spaceship spawn rates.

Referring to Figure 9, one can see that the functions in the center of the diagram are

highly inter-connected. This interconnection implies that the human and machine

would need to exchange significant amounts of information if elements within this

region of the figure were divided between these entities. However, other elements

near the periphery of the diagram are not as highly interconnected. As a result,

allocation of many of these elements to the machine are likely to result in less need

for communication between the human and machine.

Based on this analysis and the performance of the human and machine, Figure 10

represents a potential task allocation and resulting task relationship diagram. In the

diagram, tasks that the machine controls are those that appear as gray boxes and

those that the human controls are represented by rounded boxes. Note that Figure 10

shows a TRD after Step 6 is complete.

50



Figure 10. Task relationship diagram of t h e Space N avigator game w it h inherent tasks 
sh own , where functions have now b een allocated t o human and machine. See Figure 8 
for a legend of notation s used . 

Step 6: Separate Inherent Tasks . 

As discussed earlier, the ''C" and "P" nodes are also shown in Figure 10. These 

nodes indicate the need for the entity performing the function near the "C" node 

to perform the inherent task of communicating to the receiving entity and the need 

for the entity performing the function near the "P" node to perform the inherent 

51 



task of perceiving and interpreting the information to enable performance of the

function. Because of the selected function allocation, there are several task handoffs

from human to machine and vice versa as the “C” and “P” nodes indicate. Some of

the communication/perception chains are inconsequential, like communicating from

the machine to human if a specific spaceship has a route already–as a simple path is

already drawn between entities to aid transfer of this information. However, others

are more difficult.

For example, communicating the destination planet for all ships to a human can

be simple, but it is important and perhaps difficult to ensure perception. If the ships

are color-coded to align with a specific planet, this task is simple for most people when

few entities are available. However, it becomes increasingly difficult as the number of

entities increase and in some cases impossible for certain individuals (e.g., those who

are color blind). Therefore, it is not only needed to communicate the information,

but to confirm the transfer of critical information to insure a handoff. Steps 5 and 6

are interconnected. The Process Model (Figure 6) has a revision loop connecting the

latter to the former, as the inherent tasks that appear in Step 6 can inform decisions

in Step 5.

Step 7: Define Adaptive Automation States.

Finally, we apply adaptive automation to the TRD. Figure 11 shows how the

process changes after adaptive automation nodes are selected. Although all of the

tools presented in Step 7 are useful, some will prove more useful in specific situations

than others. For Space Navigator, the number of possible states and task handoffs

are implied by application of the other tools: node clustering, branch counting, and

inherent task comparison.

Looking at the original TRD in Figure 10, a few groupings of tasks begin to appear.

52



r··ki;~~;;;·-~ 
! All aliens : 
l-••••• T ..... : 

, .............................. .. 
! 10 dest. planet ! 
: of Al l ships ! 
........... ~--------~ 

r·~;;;~~i~·Au-1 
i nO-fly zones : 
l. ........ i ............ • 

..... ········ .... .. Y. ... .. . 
•••••. ...,.:.. .. ·• 10 s hips • 

( Dete.:t.likely ·: .I headed f~ a'; 
\ . colhsoons _: •••• •• \ no-fly zone / 

····· ~·.-··: .......• ... -··· • ............ · 
~~ .. .. . .. .. .. 

: : Select best \ 
··--··---------------~--~~~~-~0 ~~~~ .. ~-----·--··----------

fiD·~·;;.i~-;.~.;;1 
...... : routes already : 

&. ................ p ............. J 

' 

' 

F igure 11. Task re lation ship d iagr am of the Sp ace Navigator game, where functions 
h ave n ow b een a llocat ed t o human n od es, m achine n od es, and adapt ive n od es. See 
F igure 8 for a legend of n o ta t ion s used . 

One shows up near the top that encapsulates several spaceship selection related tasks, 

while a second group near the bottom represents several act ion-oriented tasks. These 

groups of t asks could prove useful as adaptive node clusters. 

Branch counting is then applied to narrow the results from our node clustering. 

The action-oriented cluster is eliminated due to the large number of branches present 

53 



in this location of the diagram. From a more subjective perspective, it would obviously

be difficult to automate these tasks as they tend to rely on dynamic elements of the

game (e.g. no-fly zones and ships that move).

The final TRD in Figure 11 arises from inherent task load comparison. The space-

ship selection cluster is further refined by analyzing where the inherent tasks cross.

By looking at these tasks, we see that there is a group of tasks that are all controlled

by the same entity. Thus allowing a set of similar communication and perception

inherent tasks. The large cluster then is chosen for an adaptive automation.

In this case, one can imagine a system that adapts to the player’s workload to

automate the selection of which ship to act on when the user is inundated with choices,

by highlighting a specific ship. This arrangement permits the system to decide which

spaceship is most important to route or reroute and conveys this information, ideally

in a very clear fashion, to the human. The human selects and draws the path. As

such, the system determines the critical ships to address, a task that can be difficult

for the human when the screen is cluttered, while allowing the human to select a

route, a task that is too complex for the machine to perform reliably. It is important

to note the revision loops in the process model once again here. Once complete, the

design may require a complete overhaul or several minor tweaks.

2.5 Conclusions

A function-to-task design process model has been presented that assists an adap-

tive automation system designer in determining the allocation of tasks between the

human, machine, and dynamically between the two. This process model permits the

designer to investigate the effects of allocation on explicit and inherent task load for

the intended user when interacting with an adaptive automation system. The process

model demonstrates that reallocation of functions imposes a change in inherent tasks

54



to permit the proper communication and perception of information between the per-

forming entities. As such, reallocation of a function implies a change in information

flow between the machine and human, and this change requires the allocated task

performer to utilize cognitive and physical resources to communicate and perceive

the appropriate information to enable task performance.

Consideration of the information available in the task relationship diagrams when

performing task allocation permits the designer to understand and potentially reduce

the volume or complexity of information exchange between a human and machine.

This tool may also help to reduce unwanted redundancy between the functions the

human and the machine perform by clarifying the form of the information necessary

to facilitate human decision making.

The function-to-task model requires the designer to identify the functions that are

necessary to achieve the goals of the system and decompose these functions into leaf-

level or atomic functions. The dependencies among these functions are then explicitly

captured in a function relationship diagram. The functions are then allocated to an

appropriate entity to form the basis of a task relationship diagram. Information

flow between independent entities is then defined, identifying inherent tasks that are

present in the allocation to provide communication. The form of the task relationship

diagram is then evolved through application of five analysis tools to identify points in

the TRD where adaptive automation could be easily accommodated. The application

of this process model thus results in the allocation of tasks to the human, machine,

or dynamically to the two entities.

The TRD resulting from a systematic implementation of the function-to-task de-

sign process model allows the designer to identify locations within a system where

adaptive automation could provide benefit. However, this process model does not

result in the design of an adaptive automation system but aids the designer in during

55



the conceptual design portion of the user-centered design process [110]. Coupling the

information from the task relationship diagram with the existing adaptive automation

taxonomy, the designer can more effectively create well-targeted adaptive automation

systems. Further, the tasks derived from this process can be used as input to existing

interface design models, such as DIANE+ [122] or ConcurTaskTrees (CTT) [124],

which enable detailed design of the user interface.

56



III. Clustering-Based Real-Time Player Modeling

To move from the Function to Task Design Process Model to an adaptive au-

tomation implementation, the automation must be built; an automation must first

exist, before it can become an adaptive automation. For this research, an adaptive

automation node needed to be created within the Space Navigator environment’s task

relationship diagram. The trajectory draw task was chosen as a task that could be

performed either by the machine or by the human, thus lending itself to adaptive

automation.

This chapter presents work that describes the trajectory drawing automation sys-

tem. The work presented here began with an off-line player modeling system to create

trajectories, which was presented at the 28th Canadian Conference on Artificial In-

telligence,1 However, this work was later adjusted to work as a real-time trajectory

generator. The following is a slight adaptation to a paper submitted to the IEEE

Transactions on Computational Intelligence and AI in Games,2 with work presented

in previous chapters of this dissertation omitted.

3.1 Introduction

Automating game-play in a human-like manner is the goal of a large area of intel-

ligent gaming research, with applications from trying to succeed in a gaming version

of the “Turing Test” [133] to creating human-like game avatars [134]. When we move

from playing a game like a generic human to performing like a specific human, the

dynamics of the problem change [135]. Generalized datasets can no longer be lumped

into large groups of past game-play. In complex dynamic environments it can be

1Bindewald, J. M., Peterson, G. L., and Miller, M. E. Trajectory generation with player modeling.
In Advances in Artificial Intelligence (2015), Springer, pp. 42–49.

2Bindewald, J. M., Peterson, G. L., and Miller, M. E. Clustering-based real-time player modeling.
IEEE Transactions on Computational Intelligence and AI in Games (SUBMITTED).

57



difficult to differentiate individual players, because the insights exploited in imitating

“human-like” game-play can become less useful in imitating the idiosyncrasies that

differentiate specific individuals’ game-play.

There are several benefits of individual player imitation. Individual player imita-

tion provides insights into modeling more believable opponents [134]. Better under-

standing what sets individual players apart from others, allows a game designer to

build more robust game personalization [136]. Learning the aspects of a game state

that set individual players apart, allows for better understanding of how to adjust

games according to skill level [137].

This paper contributes a real-time individual player modeling system that enables

an automated agent to perform response actions in a game that are similar to those

that an individual player would have performed in similar situations. This work im-

proves upon past player modeling efforts, such as [138], emphasizing three things.

First, the player modeling system automatically updates in real-time rather than re-

quiring off-line computation to adjust to changing game-play over time. Secondly, the

system takes advantage of insights gleaned from past game-play clustering to gain a

statistically significant differentiation between players in a relatively short amount of

game-play (five, five-minute games). Additionally, the clustering-based player mod-

eling method allows the practitioner to glean insights into what differentiates the

game-play of individual players.

This paper proceeds as follows. Section 3.2 reviews related work in the fields of

player modeling and learning from past game-play. Section 3.3 presents a generic

player model methodology and then uses the generic player model as a base for

implementing a real-time individual player modeling system. This model is then

demonstrated using the Space Navigator trajectory generation game as a test-bed.

Section 3.5 gives experimental results showing the individual player modeling system’s

58



improvements over the generic modeling method. Section 3.6 summarizes the findings

presented and proposes potential future work.

3.2 Related Work

Player modeling research informs the methodology to create trajectories similar

to those of an individual player. Methods involving learning from past experiences

provide insight into how to generate new trajectories from past game-play instances.

This section describes some over-arching areas of past work that influence the current

research.

Player Modeling.

Three taxonomies for player modeling exist, each providing a different way of

organizing the field. Each model is presented and explained. Interspersed with the

model descriptions are examples of how the model would classify different player

modeling research efforts.

Yannakakis Model.

In the Yannakakis player model taxonomy [139], four input types are used to

build player models of two types which provide four types of outputs. Inputs to

a player model fall into four categories: game-play, objective, game context, and

player profile. Game-play data (often called behavioral data) captures actions that

a player takes in the given game environment. Objective data includes a player’s

measurable physiological responses to the game environment. Game context data

denotes a representation of the real-time state of the game. A player profile is a

static representation of the player outside of the context of the game (e.g. personality

type). These four inputs are used in some combination to create a player model.

59



The resulting player model is either a model-based (top down) or model-free

(bottom-up) player model. In a model-based player model the model is built on some

form of a theoretical framework where player groupings are pre-defined according to

some set of features. Examples of model-based player models include supervised neu-

ral networks [140], trait theory to pre-determine player types [141], strategy groupings

based on game design features [142], and association rule mining to find player experi-

ence/activity relationships [143]. In model-free player models the goal is to find player

types that naturally arise from the collected data. Clustering is a common method

to find player types, some examples of which include hierarchical clustering [144],

k -means [145,146], neural networks [140], and self-organizing maps [144].

When utilized, player models produce an output when a given state or response is

presented to it depending on its intended purpose. The outputs from player models

can encompass scalar values, class membership, ordinal data (rankings), or no output

(such as when learning a player model for clustering purposes).

Smith Model.

The Smith player model taxonomy [147] classifies player models across four inde-

pendent facets: domain, purpose, scope, and source. The domain of a player model

is either game actions (similar to Yannakakis’s game-play data input type) or human

reactions (similar to the objective and player profile input types). The second facet,

purpose, describes the end for which the player model is implemented: generative

player models aim to generate actual data in the environment in place of a human or

computer player, while descriptive player models aim to convey information about a

player to a human. The scope of the player model describes the scope of players the

model represents: individual (one), class (a group of more than one), universal (all),

and hypothetical (some theoretical player or set of players that doesn’t fit in the other

60



categories). The source of a player model can be one of four categories: induced -

objective measures of actions in a game; interpreted - subjective mappings of actions

to a pre-defined category; analytic - theoretical mappings based on the game’s design;

and synthetic - based on some non-measurable influence outside of the game context

(e.g. hunches).

For descriptive purposes, each player model is given a type for each of the four

facets. For example, the player model created in [148] for race track generation mod-

els individual player tendencies and preferences (Individual), objectively measures

actions in the game (Induced), creates tracks in the actual environment (Generative),

and arises from game-play data (Game Action).

Bakkes Model.

Bakkes et al [149] create a player behavior model that classifies player models

that involve game-play data inputs in the Yannakakis model or fall in the game

action domain in the Smith model into four categories:

• Player behavior models based on player actions map states encountered in the

game to player actions. A good example of this type of model is the player

models associated with research on poker player modeling [150].

• Player behavior models based on player tactics take multiple actions and/or the

actions of multiple players into account to model different players, an example

being the tactical offensive football play models created in [151].

• Player behavior models based on player strategies involve the use of different

tactics in succession, and tend to account for “entire game” time frames. Exam-

ples of strategy level player behavior modeling exist in real-time strategy game

research, such as systems designed to play StarCraft [152,153].

61



• Player profiling involves the use of player behavior in games to establish psycho-

logical or sociological player profiles. Research efforts measuring entertainment

in games [154,155] tend to allow for this type of behavior modeling.

Learning from Previous Game-Play.

Two areas of research that rely on past experience to inform future automated

game-play include: Case-Based Reasoning (CBR) and Learning from Demonstration

(LfD). Both CBR and LfD train an automated system to generate responses based

on observations within an environment. In CBR, a “case-base” maintains a set of

observed environment states and their associated responses (cases) [156]. When a

new state is received by the CBR a previous case is retrieved, adapted to the current

state, and a new response is fashioned. The new state and its associated response is

then either added to the case-base or thrown away according to observed feedback.

In LfD, a teacher demonstrates a skill that it would like the the automated system

to learn [157]. The learner attempts to derive a policy based on the demonstration,

and then attempts to execute the derived policy. The policy is then evaluated and

updated with feedback in the environment.

The nearest neighbor principle maintains that instances of a problem that are

a shorter distance apart more closely resemble each other than do instances that

are a further distance apart [158]. This concept is applied in many locally weighted

learning algorithms that learn how to perform regression or classification tasks by

comparing an incoming instance to that of its nearest neighbors [159]. The nearest

neighbor principle is used to find relevant past experiences in LfD tasks such as a robot

intercepting a ball [160], CBR tasks such as a RoboCup soccer-playing agent [161], or

tasks integrating both LfD and CBR such as in real time strategy games [162]. When

searching through large databases of past experiences approximate nearest neighbors

62



searches, such as Fast Library for Approximate Nearest Neighbors (FLANN [163]),

have proven useful in approximating nearest neighbor searches while maintaining

lower order computation times in large search spaces.

3.3 Methodology

The real-time player modeling paradigm we present here improves on previous

work in three ways. As the name suggests, the player model updates in real-time to

adapt to changing player habits. Additionally, the paradigm pulls insight by clustering

past game-play, differentiating between players quickly. Then, the resulting player

models allow the practitioner to investigate specific individual game-play tendencies

further. Figure 12 illustrates our real-time player modeling paradigm. This real-time

player modeler creates responses to provided game states that are similar to those

that an individual player would have given in response to similar states. This section

explains the three main tasks of the real-time player modeler: creating a generic

player model, generating similar response trajectories, and real-time updating of the

player model with individual player game-play.

Create Generic Player Model.

This section outlines the generic player model creation process, shown in shaded

area 1 of Figure 12. Clustering the past game-play instances both by state and

response reveals general player tendencies. With information gained from cluster-

ing, pruning outlier instances creates a universally representative example game-play

dataset. This dataset then forms the groundwork for a generic player model that

maps state clusters to response clusters.

63



Response 

F igure 12. A real-t ime updating individual player modeli ng paradigm. 

State and R esponse Clustering. 

....... 

\,\ 

0) 
.. ··/ 

.·· ... 

Similar to the method used in [138], Ward agglomerative clustering [164] provides 

a baseline for player modeling. Clustering reduces the st.ate-response pa.irs into a 

set of representative clusters1 reducing the potential representation size of a player 

model. This method was proven effective for elustering in a tTajectory creation game 

environment in [138, 165]. Agglomerative clustering starts with a set of game-play 

instances that contain a state and its associated response and assigns each instance 

to a state cluster and a response cluster. The number of clusters will depend on the 

environment and size of the underlying dataset. The mapping from a state cluster to 

a response cluster for state-response instance demonstrates a proclivity for a player to 

react with a given maneuver in a. specific type of game situation. By determining the 

frequency of state cluster to response cluster mappings, common situational responses 

and outlier actions emerge. 

64 



Cluster Outlier Pruning.

The frequency of state cluster to response cluster mappings reveal common and

outlier situational responses, providing the basis for two types of pruning that gen-

eralize the generic player profile by removing infrequent interactions. First, instance

frequency within clusters helps in pruning outliers from the set of all game instances.

If a given state has only been seen in one instance by one player, that state is unlikely

to provide much benefit in predicting future responses. Similarly, a response given by

only one player in one instance is unlikely to be replicated in future player responses.

Clusters with outlier responses are removed first by removing all instances as-

signed to the least populated response clusters. The cutoff threshold for determining

which instances to remove could be either a minimum response cluster size or just a

percentage of response clusters to remove. For example, due to the distribution of

cluster sizes in the Space Navigator database we removed instances falling in the bot-

tom 25% of all response clusters according to cluster size. Setting cutoff thresholds

relies on knowledge of the environment and underlying dataset distribution.

Next, outlier state clusters are removed in two ways. First, instances that fall in

the bottom 25% of all state clusters according to cluster size are removed, removing

all clusters that are rare in general. However, removing states not seen by many

different players is also important. In addition to removal based on sheer cluster size,

pruning also removes instances falling into a state cluster encountered by a minimal

subset of players. This removes a subset of clusters not removed previously: state

clusters with many instances reached by an extremely small subset of players. It

is important to note that although the generic player model will be built on the

pruned game-play database, the original state and response clusters are used. In this

way, individual player modeling can still capture outlier states or responses individual

players encounter that most players do not encounter.

65



Player Model Creation Algorithm.

Whereas [138] used an offline game-play database creation method, the current

research uses a faster online system to model players. Algorithm 1 generates a generic

player model that determines the likelihood each state cluster is to map to each

response cluster.

Algorithm 1 Generic player model creation algorithm.

1: inputs:
2: x = the number of state clusters
3: y = the number of response clusters
4: M = {〈S1, R1〉 , 〈S1, R2〉 , · · · , 〈Sx, Ry〉}, all state-response cluster mappings

5: C = Ox,y . x× y zero matrix
6: P = Ox,y . x× y zero matrix
7: for i = 1→ x do
8: for j = 1→ y do
9: ci,j = the number of instances assigned to cluster mapping 〈Si, Rj〉

10: end for
11: end for
12: for i = 1→ x do
13: for j = 1→ y do

14: Pi,j = ci,j/
y∑
k=1

ci,k

15: end for
16: end for
17: return P

The generic player model creation algorithm takes in the number of state and

response clusters (x and y respectively), and the set of all state-response cluster

mappings (M). Line 5 creates a matrix of counters (C) to help determine how many

instances belong to each cluster in M. Line 5 creates an empty player model (P) that

will hold likelihoods for each state-response cluster mapping in M. Both C and P

are initialized to the x× y zero matrix. The loops beginning in Lines 7 and 8 process

each of the state-response cluster mappings. For each cluster mapping, the number

of instances provided by players that belong to cluster pairing 〈Si, Rj〉 is recorded.

66



The loop beginning in Line 12 creates the player model P from the counter matrix

C. The model contains a matrix of likelihoods that a given instance provided by a

generic player chosen at random from the game-play database will belong to the

indicated state and response cluster mappings. The likelihoods are determined by

normalizing across the rows of C. For each state cluster, the count for each response

cluster is divided by the total number of instances assigned to the state cluster. The

matrix of likelihoods is returned as the generic player model P. This generic player

model forms the baseline for individual player model creation. To model individual

player gameplay habits, the individual player modeling techniques in the next section

update the generic player model through observed game-play data.

Update Individual Player Model.

For real-time individual player modeling, this research updates the generic player

model created in Algorithm 1 as an individual plays the game. Over time, the updates

shape a player model that represents an individual player’s game-play tendencies,

as illustrated in shaded area 2 of Figure 12. The individual player update process

involves an algorithm to learn a player model with individual player tendencies over

time. In order to train an individual player model quickly, the information gained

from each state-response instance leads to an update of the state-response cluster

scores.

Individual Player Model Real-Time Update Algorithm.

Algorithm 2 demonstrates the real-time updates that take place to learn an in-

dividual player’s tendencies. The algorithm begins with the generic player model P.

Once a player submits a response in the game environment, the current game state

and the response are submitted. The algorithm finds the closest state (Sclose) and re-

67



sponse (Rclose) clusters to the state and response passed in by the player. The player

model is updated at the intersection of Sclose and Rclose by δclose. Then the player

model is normalized across all the R values for Sclose so that the values sum to 1.

Algorithm 2 Individual player model real-time update algorithm.

1: inputs:
2: P = an x× y generic player model created by Algorithm 1
3: 〈sin, rin〉 = a player-provided state-response pair
4: M = {〈S1, R1〉 , 〈S1, R2〉 , · · · , 〈Sx, Ry〉}, all state-response cluster mappings

5: Sclose = the closest state cluster to state sin
6: δclose = q · (δcp + δcmv + δpma), Sclose’s update increment weight
7: Rclose = the closest response cluster to response rin
8: P (Sclose, Rclose) = P (Sclose, Rclose) + δclose
9: for P (Sclose, i) where i = 1→ y do

10: P (Sclose, i) = P (Sclose, i) / (1 + δclose)
11: end for

Update Increment Weighting.

The player model update algorithm is useful in modeling player behavior, but

there are certain states from which more can be gleaned than others. Weighting the

increment values for a given state-trajectory pair can be useful in quickly learning

idiosyncrasies that set a player apart from the generic player. Specifically, knowing

which state clusters contain the most information for future player modeling is useful.

Traits gleaned from the clustered data provide ways to help determine which state

clusters should create larger learning increments, and which states provide minimal

information to extend beyond the generic player game-play model. Three binary

traits contribute to the update increment, δ, in Line 6 of Algorithm 2. The three traits

calculated to help weight δ include cluster population, cluster mapping variance, and

previous modeling utility.

Cluster Population: When attempting to learn game-play habits quickly, knowing

the expected responses of a player to common game states is important. Weighting

68



δ according to the size of a state cluster in comparison to that of the other state

clusters across the entire game-play dataset emphasizes increased learning from com-

mon states for an individual player model. States that fall into larger clusters can

provide better information for quickly learning how to differentiate individual player

game-play habits. To calculate the cluster population trait, all state cluster sizes are

calculated and a population threshold is selected. Any state cluster with a population

above the population threshold is given a cluster population trait weight of δcp = 1

and all other state clusters receive a weight of δcp = 0.

Cluster Mapping Variance: When mapping state clusters to response clusters,

some state clusters will consistently map to a specific response cluster across all

players. Other state clusters will consistently map to several response clusters across

all players. Very little about a player’s game-play tendencies is learned from these

two types of state clusters. However, state clusters that map to relatively few clusters

per player (intra-player cluster variance), while still varying largely across all players

(inter-player cluster variance) can help quickly differentiate players. The state cluster

mapping variance ratio is the total number of response clusters to which a state

cluster maps across all players divided by the number of response clusters to which

the average player maps, essentially the ratio of inter-player cluster variance to the

intra-player cluster variance. The cluster mapping variance trait weight, δcmv, is set

according to a cluster variance ratio threshold. All state clusters with a variance ratio

above the threshold receive a weight of δcmv = 1 and all others receive a weight of

δcmv = 0

Previous Modeling Utility: The last trait involves running Algorithm 2 on the

existing game-play data. Running the individual player update model on previous

game-play data provides insights into how the model works in the actual game en-

vironment. This trait requires the use of a system that automatically generates

69



responses to presented states using a player model is already established.

First, Algorithm 2 runs with δ = 1 for all state clusters, training the player

model on some subset of a player’s game-play data (training set). Then it iterates

through the remaining game-play instances (test set) and generate a response to

each presented state, using both the individual player model and the generic player

model. This repeats for each individual player in the game-play dataset. For each

test set state, we then determine which response was most similar to the player’s

actual response. Each time the individual player model is closer than the generic

player model to the actual player response, tally a ‘win’ for the given state cluster

and a ‘loss’ otherwise. The ratio of wins to losses for each state cluster makes up

the previous modeling utility trait. The previous modeling utility trait weight, δpma,

is set according to a previous modeling utility threshold. All state clusters with a

previous modeling utility above the threshold receive a weight of δpma = 1 and all

others receive a weight of δpma = 0.

Calculating δ: When Algorithm 2 runs, δ is set to the sum of all trait weights for

the given state cluster multiplied by some value q which is an experimental update

increment set by the player. Line 6 shows how δ is calculated as a sum of the

previously discussed trait weights.

3.4 Case Study: Space Navigator

This section demonstrates the player modeling paradigm, focusing specifically

on the response generation section of the player modeling paradigm (unshaded area

3 of Figure 12), with a specific application in generating trajectory responses in

Space Navigator. First, an outline of the initial data capture experiment within

the Space Navigator environment is presented. Then, solutions are presented to

three challenges specific to the game environment: developing a state representation,

70



comparing disparate trajectories, and finding a trajectory distance measure that is

meaningful to humans. These solutions are then used to develop a trajectory response

generation algorithm that utilizes a player model to generate trajectories similar to

those that would have been provided by an individual player in the same situation.

Initial Data Capture Experiment.

An initial experiment captured a corpus of game-play data for further comparison

and benchmarking of human Space Navigator game-play. Player data collection used

a set of Samsung ATIV Smart PC tablet computers running the Windows 8 operating

system. Data was collected from 32 participants playing 16 five-minute instances of

Space Navigator. The instances represented four difficulty combinations, with two

specific settings changing: (1) the number of NFZs and (2) the rate at which new

ships appear.

The environment captures data associated with the game state whenever the

player draws a trajectory. The data includes: time stamp, current score, ship spawn

rate, NFZ move rate, bonus spawn interval, bonus info (number of bonuses, location,

and lifespan of each), NFZ info (number of NFZs, location, and lifespan of each),

other ship info (number of other ships, ship ID number, location, orientation, tra-

jectory points, and lifespan of each), destination planet location, selected ship info

(current ship’s location, ship ID number, orientation, lifespan, and time to draw the

trajectory), and selected ship’s trajectory points. The final collected dataset con-

sists of 63,030 instances, with each player’s dataset including an average of 1,950

state-trajectory instances.

71



State Representation.

Space Navigator states are dynamic both in number and location of objects.

Bonuses and spaceships appear and disappear throughout the game and spaceships

and NFZs move throughout the scene over time. The resulting infinite number of

configurations makes individual state identification difficult. To shrink the large fea-

ture vectors obtained in the data capture, the state representation contains only the

elements of a state that directly affect a player’s score (other ships, bonuses, and

NFZs) scaled to a uniform size along with a feature indicating the relative length

of the spaceship’s original distance from its destination. Algorithm 3 describes the

state-space feature vector creation process.

Algorithm 3 State-space feature vector creation algorithm.

1: input:
2: L = the straight-line trajectory from the spaceship to its destination planet.

3: initialize:
4: η ∈ [0.0 · · · 1.0) = a weighting variable
5: s = an empty array of length 19
6: zoneCount = 1

7: Translate all objects equally s.t. the selected spaceship is located at the origin.
8: Rotate all objects in state-space s.t. L lies along the X-axis.
9: Scale state-space s.t. L lies along the line segment from (0, 0) to (1, 0).

10: for each object type ϑ ∈ (OtherShip,Bonus,NFZ) do
11: for each zone z = 1→ 6 do
12: zoneCount = zoneCount+ 1
13: for each object o of type ϑ in zone z do
14: do = the shortest distance of o from L
15: wo = e−(η·do)

2

. Gaussian weight function
16: s [zoneCount] = s [zoneCount] + wo
17: end for
18: end for
19: end for
20: s [19] = the non-transformed straight-line trajectory length
21: Normalize values of s between [0, 1]
22: return s

72



The algorithm first transforms the state-space features to a straight-line trajectory

frame in Line 2. Line 7 translates the state space so the selected ship is at the

origin. Line 8 rotates all the objects in state-space so that the straight-line trajectory

between the ship and the destination planet is located on the X -axis. Then, Line 9

scales the state-space such that all straight-line trajectories are of equal length. These

transformations allow disparate trajectories to be compared in the state-space.

The loop beginning on Line 10 accounts for the different element types and the

loop beginning on Line 11 divides the state-space into six zones as shown in Figure 13.

The first dividing line creates two zones along the straight-line trajectory. The second

and third dividing lines occur perpendicular to the straight-line trajectory at the

location of the spaceship and destination planet respectively. This effectively divides

the state-space into three zones with relation to the spaceship’s straight-line path:

behind the spaceship, along the path, and beyond the destination.

To compare disparate numbers of objects, the loop beginning in Line 13 uses a

method similar to that used in [161]. Each zone collects a weight score (s) for each

object within the zone. This weight score is calculated using a Gaussian weighting

function based on the minimum distance an object is from the straight-line trajectory.

For objects beyond the destination planet or behind the spaceship, the minimum

distance will not be perpendicular to the straight-line trajectory.

Figure 13 shows the transformation of the state into a feature vector using Al-

gorithm 3. The state-space is transformed in relation to the straight-line trajectory,

and a value is assigned to each “entity type + zone” pair accordingly. For example,

Zone 1 has a bonus value of 0.11 and other ship and NFZ values of 0.00, since it

only contains one bonus. The weighting function is evident in the fact that closer

entities (Zone 6 - NFZ) have a higher score than entities that are farther away from

the straight-line trajectory (Zone 1 - bonus).

73



Figure 13. The six zones surrounding the straight line trajectory in a Space Navigator
state representation and the state representation calculated with Algorithm 3.

Lastly, the straight-line trajectory distance is captured. This accounts for the

different tactics used when ships are at different distances from their destination.

Ships that are very close to their destination are more likely to result in responses

close to a straight-line trajectory, while those that must traverse nearly the entire

screen will see a wider variance from the straight-line trajectory. The resulting state

74



representation values are normalized between zero and one.

Trajectory Comparison.

Trajectory generation requires a method to compare disparate trajectories. This

is crucial to being able to determine the similarity or dissimilarity of two response

trajectories [166]. However, trajectories generated within Space Navigator can vary in

composition, containing differing numbers of points and point locations. This section

describes how the trajectory generator permits trajectory comparison. Trajectory

comparison requires both re-sampling and transformation. Trajectory re-sampling,

based on linear interpolation [167], ensures all trajectories consist of the same number

of points. The trajectory generator can then compare trajectories using a simpler

distance measure.

Algorithm 4 performs trajectory re-sampling. The algorithm begins by keeping

the same start and end points, then iterates through until the re-sampled trajectory

is filled. The process first finds, in Line 10, the proportional relative position (pm)

of a point. The proportional relative position indicates where the i-th point would

have fallen in the original trajectory and may fall somewhere between two points.

Calculated in Line 16, the proportional distance (dm) that pm falls from the previous

point in the old trajectory (p0) is the relative distance that the i-th re-sampled point

falls from the previous point. To compare trajectories, the target number of points

is set to 50 for re-sampling all the trajectories (i.e. navg). Fifty is approximately the

mean number of points found in all the trajectories during the initial data capture.

Re-sampling the points in this manner has two advantages. First, the re-sampling

process remains the same for both trajectories that are too long and too short. Sec-

ondly, the re-sampling process maintains the distribution of points along the tra-

jectory. A long or short distance between two consecutive points, relative to other

75



Algorithm 4 Trajectory re-sampling algorithm.

1: inputs:
2: nold = Number of points raw trajectory we are re-sampling contains
3: nr = Number of points to which we are re-sampling
4: told = Array of (x, y) points representing the raw trajectory we are re-sampling

5: initialize:
6: tr = Empty array of (x, y) points of length nr to hold the re-sampled trajectory

7: tr[1] = told[1]
8: tr[nr] = told[nold]
9: for i = 2→ nr − 1 do

10: pm =
(
nold

nr

)
· i

11: p0 = bpmc . The position directly before pm
12: p1 = dpme . The position directly after pm
13: if pm = p0 then
14: tr[i] = told[pm]
15: else
16: dm = pm − p0
17: (x0, y0) = told[p0]
18: (x1, y1) = told[p1]
19: tr[i] = (x0 + dm (x1 − x0) , y0 + dm (y1 − y0))
20: end if
21: end for
22: return tr

consecutive point distances within the trajectory, remains in the re-sampled trajec-

tory. This ensures that trajectories drawn quickly or slowly maintain those sampling

characteristics to some extent.

Once re-sampled, trajectories are translated, rotated, and resized in relation to

the straight-line trajectory. Since Space Navigator state-space feature vector creation

geometrically transforms a state, the trajectories generated in response to the state

must be transformed in the same manner. This transformation ensures the state-space

and trajectory response are positioned in the same state space.

76



Distance Measure.

To ensure the trajectories generated in Space Navigator are similar to those of

an individual player, a distance measure must capture the objective elements of tra-

jectory similarity such as comparing specific points. Additionally, an ideal similarity

measure will also be meaningful to human players, in that the distance measure will

be small when a human would think two trajectories are similar and large when

two trajectories are dissimilar. A human-subject study confirmed that Euclidean

trajectory distance not only distinguished between trajectories computationally, but

also according to human conceptions of trajectory similarity. The experiment was

conducted as follows in the Space Navigator environment.

Each of the 35 participants played two five-minute games of Space Navigator for

familiarization purposes. Then each player completed 60 pre-scripted instances taken

from previously captured games of Space Navigator. Each scenario starts from a

paused Space Navigator instance and the spaceship upon which the player is expected

to act blinks. The player responds to the scenario by drawing a trajectory for the

blinking ship. The game is paused and the trajectory response is recorded. The

scenario is then shown to the player again, with their trajectory replaced by three

new trajectories superimposed onto the state. The player is asked to choose the

trajectory that is “most similar” to the one they drew.

The three trajectories shown to the player include a straight line from the space-

ship to its destination planet, the trajectory in the game-play database that is closest

to the provided trajectory according to Euclidean trajectory distance, and the re-

sponse trajectory to a random state from the same state cluster as the current state.

The trajectories are presented as A, B, and C in randomized order. The trajectory

selected by the player is recorded as the player’s choice as the most similar trajectory.

The final collected dataset consists of 35 players completing 60 instances each, for a

77



total of 2,100 instances.

Average intra-trajectory distance between all three presented trajectories and tra-

jectory length show Euclidean trajectory distance’s effectiveness. If Euclidean tra-

jectory distance properly captures human conception of trajectory similarity, small

intra-trajectory distances should mean that all three trajectories are similarly in-

distinguishable to humans. Very small intra-trajectory distances should indicate an

almost random choice of “most similar” trajectory for the player, while the smallest

Euclidean trajectory distance from the trajectory the player drew to one of the pre-

sented trajectories should be chosen with regularity at high average intra-trajectory

distances. Additionally, smaller straight-line trajectory lengths allow for less distin-

guishability due to the constrained nature of possible actions at shorter distances.

Therefore, small trajectory lengths should induce less certainty in the choice of “most

similar” trajectories.

The results in Figure 14 show that Euclidean trajectory distance captures human

conception of trajectory similarity well. All histograms were compiled in MATLAB,

the number of bins (k) set according to Rices rule [168] (k = 2n1/3, n = the number

of observations), and the k bins equally sized between the minimum and maximum

trajectory lengths. As expected, those trajectories presented with extremely small

average intra-trajectory distances are chosen at an essentially random rate (23.8%).

As the average intra-trajectory distance grows, the shortest Euclidean trajectory dis-

tance aligns with human conceptions of “most similar” at rates approaching 100%.

Euclidean trajectory distance also accounts for humans being less able to distin-

guish between shorter trajectories. Since players are more constrained in possible tra-

jectory choices at short straight-line trajectory lengths, the average intra-trajectory

distance correlates well with length as demonstrated in Figure 15. This shows a strong

78



Figure 14. The percentage of times human conception of “most similar” trajectory
agreed with the trajectory deemed most similar according to Euclidean trajectory
distance as a function of the average intra-trajectory distance.

positive correlation (r = 0.5635, p = 0).

Combining these insights, Figure 16 shows as trajectory length increases, the

percentage of trajectories classified as most similar by humans more regularly matches

with Euclidean trajectory distance. Euclidean trajectory distance, therefore, serves

as an adequate measure of trajectory similarity in the Space Navigator game.

Generate Response.

The response generator utilizes a player model P to generate player responses.

This section describes a method to generate new trajectory responses using the cluster

weights in P that derive from either a generic or learned player model.

79



Figure 15. Average intra-trajectory distance as a function of trajectory length.

Existing trajectory generation research has tended to gravitate toward methods

creating trajectories one point at a time. Using methods like trajectory libraries [169]

or Gaussian mixture models [170], the trajectory generator predicts only the next

point on the trajectory. Then it recursively continues the process of creating further

points until it reaches the desired en state and returns the entire created trajectory.

However, humans tend to think in terms of “full maneuvers” when generating tra-

jectories, specifically for very quick trajectory generation tasks such as trajectory

creation games [165]. Therefore, the Space Navigator trajectory response generator

creates “full maneuver” trajectories.

The trajectory response generation algorithm takes as input: the number of trajec-

tories to weight and combine for each response (k), the number of state and trajectory

80



Figure 16. The percentage of times human conception of “most similar” trajectory
agreed with the trajectory deemed most similar according to Euclidean trajectory
distance as a function of trajectory length.

clusters (x and y respectively), the re-sampled trajectory size (µ), a new state (snew),

a player model (P), the set of all state-trajectory cluster mappings (M).

Line 10 begins by creating an empty trajectory of length µ which will hold the

trajectory generator’s response to snew. Line 11 then finds the state cluster (Sclose)

to which snew maps. Pclose, created in Line 12, contains a set of likelihoods. Pclose

holds the likelihoods of the k most likely trajectory clusters to which state cluster

Sclose maps.

The loop beginning in Line 13 then builds the trajectory response to snew. Line 15

finds the instance assigned to both state cluster Sclose and trajectory cluster Ti with

the state closest to snew. The response to this state is then weighted according to

81



Algorithm 5 Trajectory response generation algorithm.

1: inputs:
2: k = the number of trajectories to combine
3: x = the number of state clusters
4: y = the number of trajectory clusters
5: µ = the re-sampled trajectory size
6: snew = a state we have not seen before
7: P = an x× y player model
8: M = {〈S1, T1〉 , 〈S1, T2〉 , · · · , 〈Sx, Ty〉}, all state-trajectory cluster mappings

9: initialize:
10: tnew (µ)← an empty trajectory of µ points

11: Sclose = the closest state cluster to state snew
12: Pclose = max

k

[
PSclose,(z|∀z∈1,...,y)

]
13: for each Pclose,i ∈ Pclose do
14: Ti = the trajectory cluster associated with Pclose,i
15: sclose,i ← state closest to snew in 〈Sclose, Ti〉
16: tclose,i ← the response trajectory to sclose,i
17: for ν = 1→ µ do
18: tnew (ν) = tnew (ν) + tclose,i (ν) · Pclose,i
19: end for
20: end for

21: tnew = tnew/
k∑
i=1

Pclose,i

22: return tnew

the likelihoods in P. The loop in Line 17, then combines the k trajectories using a

weighted average for each of the µ points of the trajectory. The weighted average

trajectory points are then normalized across the k weights used for the trajectory

combination in Line 21. The trajectory returned by Line 22 is the trajectory response

generation algorithms response to state snew according to the player model P

3.5 Experiment and Results

This section describes an experiment to test the real-time individual player mod-

eling trajectory generator and presents insights gained from the experiment. The

82



results show that the individual player modeling trajectory generator is able to cre-

ate trajectories more similar to those of a given player than a generic player-modeling

trajectory generator, with a limited amount of training data. Additionally, the results

show how the model provides insights for a better understanding of what separates

different players’ game-play through an analysis of the individual player models in

comparison to the generic player model.

Experiment Settings.

The experiment compares trajectories created with the generic player model and

the individual player model, they are further compared with a trajectory generator

that always draws a straight line between the spaceship and its destination planet.

The first five games worth of state-trajectory pairs are set aside as a training dataset

and eleven games of state-trajectory pairs are set aside as a testing dataset, with

each game containing on average 123 state-trajectory pairs. Five training games was

chosen as a benchmark for learning an individual player model to force the system to

quickly pull insights that would manifest in later game-play. For each of 32 players, the

individual player model is trained on the five-game training dataset using Algorithm 2

with the trait score weights. The generic player model and straight-line methods do

not require training.

Next, each state in the given player’s testing set is presented to all three trajectory

generators. The difference between the generated trajectory and the actual trajectory

provided by the given player is recorded. The experiment presents states in the

order recorded in the original games. The individual player model does not train

on the testing data. The experiment also saves the individual player models for

later comparison and evaluation. Table 1 shows specific experimental values for the

individual player model.

83



Table 1. Experimental variable settings for individual player modeling using Algo-
rithm 2

Variable Value

Update Increment (q) 0.01

Cluster Population Threshold 240

Cluster Mapping Variance Threshold 17.0

Previous Modeling Utility Threshold 3.0

The three learning thresholds were set specifically for Space Navigator as follows.

The state cluster population threshold is set at a value of one standard deviation

over the mean cluster size, specifically 240. Forty of 500 state clusters received a

cluster population weight of δcp = 1 and 460 received a population weight of δcp = 0.

The cluster variance ratio threshold is 17, with 461 of 500 state clusters receiving a

cluster variance weight of δcmv = 1. For the previous modeling utility, a player model

was trained for each of the 32 players with five games worth of data. Then each of

the remaining 11 games were predicted using both the trained player model and the

generic player model. For each state across all 32 players, a Euclidean trajectory

distance from the generic and individual player models predicted trajectories was

calculated from the actual trajectory responses. The cutoff is a learning value of 3,

with 442 of 500 clusters receiving a previous modeling utility score of δpma = 1.

To account for the indistinguishability of shorter trajectories described in Sec-

tion 3.4, results were removed for state-trajectory pairs with straight-line trajectory

length less than length 10.12 meters in the Space Navigator environment (approxi-

mately 3.5 centimeters on the tablets with 29.5 centimeter screens used for experi-

ments). This distance was chosen as it represents the intersection in Figure 16 at

which trajectory lengths reach an accuracy one standard deviation below the mean

of trajectory similarity classification accuracy.

84



Individual Player Modeling Results.

Testing of the game-play databases shows that the trajectories generated using

the individual player model significantly improved individual player imitation results

when compared to those generated by the generic player model and the straight

line trajectory generator. Table 2 and Figure 17 show results comparing trajectories

generated using each database with the actual trajectory provided by the player,

showing the mean Euclidean trajectory distance and standard error of the mean

across all 32 players and instances.

Figure 17. Euclidean trajectory distance between generated trajectories and actual
trajectory responses across three trajectory generation methods.

The individual player model generator provides an improvement over the other

models. The mean Euclidean trajectory distance of 1.8640 provides a statistically

85



Table 2. Mean and standard error of the Euclidean trajectory distances (in
SpaceNavigator environment meters) across all state-trajectory pairs.

Database Mean Euclidean Traj Dist Std Err

Individual Player Model 1.8640 ±0.0063

Straight Line Generator 1.8781 ±0.0069

Generic Player Model 1.8784 ±0.0063

significant improvement over the straight line and generic player models, as standard

error across all instances from all 32 players does not overlap with the latter two

player models. The similar player model improves the generic databases accuracy by

learning more from a selected subset of presented states to ensure that the player

model more accurately generates similar trajectories.

Individual Player Model Insight Generation.

The individual player models provide insight into general and specific game-play.

Comparing the player model learning value changes with the aspects of a state rep-

resentation allows us to understand what aspects of a state influence game-play and

to what degree. How player model changes correlate with the state representation

enables game designers a better understanding of what distinguishes individual game-

play within the game environment. In turn, this understanding allows for game design

improvements.

Table 3 shows the results of a Pearson’s linear correlation between the mean learn-

ing value change of each state cluster across all 32 players and the state representation

values of the associated state cluster centroids. The results show that there is a statis-

tically significant negative correlation between the mean learning value changes and

all of the zones, but some changes are much larger than others.

The overall negative correlation arises among object/zone pairs intuitively. High

86



object/zone pair score imply a large or close presence of an object of the given type,

constraining the possible trajectories available to all players. For example, a large

presence of other ships in a given zone influences all players to avoid sending tra-

jectories near that area. Therefore, there is more differentiability of player actions

available when more freedom of trajectory movement is available.

With the “Ship to Planet Distance” feature, longer distances correlate to less

learning value change among player models, with the strongest correlation of all

features: r of −0.6434 and p-value < 0.0001. There are several possible explanations

for this behavior, including: (1) players are more constrained over long distances and

therefore differentiate their actions less, (2) as distances get longer, the variance in the

way an individual player draws trajectories in similar situations increases, therefore

allowing for no learning of individual tendencies, (3) shorter distances better capture

consistent tendencies that a player will carry along to distinguish his game-play over

time.

Another aspect that Table 3 begins to show is the importance of the middle zones

in comparison to the “before” and “after” zones. Figures 18, 19 and, 20 illustrate

this point graphically.

Figure 18. Graphical representation of the correlation coefficient for each Other Ship/-
Zone score with the mean change in learning values in player models.

The r values show that the middle two zones provide an larger influence on the

87



Figure 19. Graphical representation of the correlation coefficient for each Bonus/Zone
score with the mean change in learning values in player models.

Figure 20. Graphical representation of the correlation coefficient for each No Fly
Zone/Zone score with the mean change in learning values in player models.

amount of change in the learning values. For example, in Figure 18 the r values

for zones two and five are more than double those of any other zone. This idea is

somewhat intuitive as this is the area that the ship will traverse, providing the most

likely cause for interaction with objects of any given type.

Figures 18, 19, and 20 and Table 3 provide insight into the relative value that

players place on certain types of objects. For example, determining the correlation

coefficients of different Object/Zone Pairs can show that No Fly Zones in the middle

two zones provide a significantly smaller influence on learning value changes than

other ships do in the same zones. Since there is such a large difference, we can infer

88



that players reactions to other ships are more valuable in determining how a person

will play the game than No Fly Zones.

Three examples of how player modeling insights can be used in game applications

involve training, game design, and player automation. The player models can be

used to find places where specific users who are doing really well are properly valuing

certain actions (e.g. avoiding other ships) according to the incentives. Proper valua-

tions can then be communicated to players during training within the environment.

Another example is that, we can use the player modeling insights to design point

structures to more closely align with the way players perceive the value of different

object types. In Space Navigator, increasing the point magnitudes of No-Fly Zones

and Bonuses makes the game more difficult by equally balancing the incentive struc-

ture, encouraging less focus on a single objective over the others. Lastly, modeling a

specific player enables the designer to incorporate an automated player to play like a

specific expert or current user within the game.

3.6 Conclusions and Future Work

The real-time individual player modeling paradigm presented in this paper is able

to generate trajectories similar to those of a specific Space Navigator player. The

system is able to operate in real-time without needing to perform time-consuming

offline calculations to update player models. Additionally, the gains in individual

player imitation are found in a relatively small amount of game-play (five games/25

minutes). The player models developed to imitate players also allow for a better un-

derstanding of what traits of a given state provide understanding of player differences

which occur for different states.

This work provides opportunities for several areas of future work. Further studies

will research the effects of using the trajectory generator to act as an automated

89



aid for players interacting with the Space Navigator game. Additionally, further

analysis of the player modeling methods could yield further insights into how much

differentiation of individual players can be gained over different amounts of time.

Moreover, imitating individual players could provide helpful insights in determining

how experts play Space Navigator to aid in experiments to learn how to improve

player training.

90



Table 3. Correlation of each state representation value with the mean change in asso-
ciated state cluster learning values in player models

Value Pearson’s r p-value

Zone 1 - Other Ships −0.1227 0.0060

Zone 2 - Other Ships −0.3911 0.0000

Zone 3 - Other Ships −0.1616 0.0003

Zone 4 - Other Ships −0.1465 0.0010

Zone 5 - Other Ships −0.4244 0.0000

Zone 6 - Other Ships −0.1903 0.0000

Zone 1 - Bonuses −0.1569 0.0004

Zone 2 - Bonuses −0.3552 0.0000

Zone 3 - Bonuses −0.2212 0.0000

Zone 4 - Bonuses −0.1662 0.0002

Zone 5 - Bonuses −0.3693 0.0000

Zone 6 - Bonuses −0.2056 0.0000

Zone 1 - NFZs −0.1002 0.0251

Zone 2 - NFZs −0.2749 0.0000

Zone 3 - NFZs −0.1184 0.0080

Zone 4 - NFZs −0.1159 0.0095

Zone 5 - NFZs −0.2398 0.0000

Zone 6 - NFZs −0.1040 0.0200

Ship to Planet Distance −0.6434 0.0000

91



IV. Adaptive Automation System Design Life Cycle

With a trajectory drawing automation system in place for the Space Navigator en-

vironment, the focus of research moved to developing an adaptive automation system

with it. However, our initial placement of the adaptive automation system within the

Space Navigator task relationship diagram proved unsuccessful. This setback spurred

the generation of a development life-cycle to address the setbacks and characteristics

common to adaptive automation system design and implementation.

The lessons learned from the Space Navigator adaptive automation design and

implementation process are presented in this chapter. As in previous chapters, the

work presented here is a slightly modified version of a paper submitted to the IEEE

Transactions on Human Machine Systems,1 with repeated material removed.

4.1 Introduction

Automated systems bring the promises of reduced manpower costs and human er-

ror, creating systems that will reduce human workload within complex environments.

Tasks that were previously performed by a human can theoretically be offloaded onto

a machine to achieve workload reductions. Human workload reductions then allow

the human to perform increasingly desirable tasks. However, operators can over-rely

on automation, decreasing their situation awareness and allowing skills which are

necessary during automation failures to atrophy. To address this problem increasing

research emphasis has been placed on Adaptive Automation (AA) [4,63,90]. Several

research efforts have addressed aspects of AA system design [1,3,4,25,42], but do not

propose a system development life-cycle to implement AA in systems from beginning

to end. To address this problem, this paper presents a novel Adaptive Automation

1Bindewald, J. M., Peterson, G. L., Miller, M. E., and Langhals, B. T. An adaptive automation
system design life cycle. IEEE Transactions on Human Machine Systems (SUBMITTED).

92



System Development Life Cycle (AASDLC).

The AASDLC improves upon previous systems and software design life-cycles

by placing a focus on issues related to adaptive automation. These issues include

identifying locations for AA within a system, dealing with unexpected changes from

adding AA, and understanding how to trigger AA changes. The AASDLC begins by

utilizing the Function to Task Design Process Model (FTTDPM) [1] that aligns the

system’s design with the actual implementation before AA is added to the system.

User testing then enables the practitioner to ensure that the implemented system

reflects the actual system in operation. Using the insights gained from user testing

allows the FTTDPM to identify useful areas for AA within the existing system. The

resulting automation is then implemented using an AA trigger and human-machine

interface, designed with the overall AA goal in mind. Another set of user tests

ensures that user behavior when employing the AA aligns with expectations and the

AA goals in the implemented system. Multiple iterations within segments of the

life-cycle enable the creation of a system that will be ready for release.

This research provides three contributions to AA system development. First, it

presents the AASDLC created specifically to address AA system design and imple-

mentation. The second is an AA user feedback model, that assesses user feedback

on two dimensions: ‘qualitative vs. quantitative’ and ‘directed vs. undirected.’ This

model is used throughout the AASDLC to inform the design and implementation

processes. Third, the AASDLC includes a new model for AA triggers that couples

Feigh et al ’s trigger type taxonomy [3] with a trigger mode. The trigger mode en-

ables representation of discrete, continuous, or complex triggers to show the many

ways that AA can adapt in a specific situation.

This paper presents the AA system development life-cycle by first explaining the

entire process and then stepping through each phase. This life-cycle is then demon-

93



strated through an example AA system design and implementation in the Space Nav-

igator environment, analyzing strengths and weaknesses of the implementation and

suggesting improvements through application of the life-cycle.

4.2 Related Work

Research influencing AA system development includes the areas of adaptive au-

tomation models, system and software development life-cycles, specialized topic area

system development life-cycles, and user centered design methodologies.

Adaptive Automation Models.

Adaptive automation (AA), sometimes known as adaptive systems, is the compo-

nent of a human-machine system that enables dynamic adjustment of the machine

portion of the system to the changing environment in which the overall human-

machine system operates [1, 3]. AA system design involves implementing both a

specific adaptation type and a trigger(s) to adjust the type or level of automation [3].

Adaptation types include changes to function allocation, task scheduling, human-

machine interaction, or content; but the most commonly addressed adaptation type

is function allocation [3]. Parasuraman et al. [4] define an automation allocation

as one of ten levels of automation (LOA) across four stages of human information

processing. Research has subsequently used dynamic changes in LOA to create AA

systems [25, 42]. The FTTDPM for AA system design [1] focuses on adaptations

involving function allocation. Although FTTDPM provides a design methodology

focusing on where to place adaptive nodes within a system, it does not address how

to implement the AA system.

After selecting an adaptation, an AA trigger determines when and to what extent

to adjust the automation. Feigh et al [3] list five types of triggers: operator based,

94



system based, environment based, task and mission based, and spatiotemporal. Al-

though work has been done to explore the effects different types and complexities

of triggers have on human or system performance, little work has been done on AA

trigger design [11,171].

System and Software Development Life-Cycles.

A system development life-cycle is the general term for a structured process for

designing and implementing information systems. In many cases the terms system

development and software development are used interchangeably when referring to

the same life-cycles [172, 173]. Several system development life-cycles have been de-

veloped to serve differing purposes. The Waterfall model is a software development

life-cycle that follows a sequential step approach through the design process and into

implementation [82]. Although useful as an idealized life-cycle, in practice most soft-

ware development processes are not able to follow such sequential ordering. Therefore,

several iterative system development life-cycles [83, 174–177] have been developed to

allow simultaneous evolution of requirements and implementation as questionable

assumptions are revealed.

The newer life-cycles attempt to decompose aspects of the waterfall model into

smaller chunks [174] or create a more agile process where steps can be repeated as

the understanding of requirements and system limitations are revealed [176]. As

opposed to the waterfall model’s assumption that requirements must be completely

understood at the start of the process, the new life-cycles allow refinement of re-

quirements throughout the process as the steps accumulate domain knowledge and

feedback. Common to all life-cycles are phases that include some form of: require-

ments gathering, system design, software implementation, software testing, and end

product release. Each life-cycle may add or combine steps, change the ordering of

95



steps, iterate over steps, or add cycles.

A few of the more popular development life-cycles include iterative development [175],

the spiral model [83], SCRUM [174], extreme programming [176], and rapid applica-

tion development [177]. Although several life-cycles exist for systems and software

development, AA-specific design considerations are not addressed. AA-specific con-

cerns include identifying possible locations for AA within a human-machine system,

handling unexpected changes that result from AA, and developing effective AA trig-

gers. Although different development life-cycles may address some of these concerns,

AA implementations must address each concern and potential interaction.

Specialized Topic Area Development Life-Cycles.

Several research areas have created system development life-cycles to address con-

cerns specific to their industry, and their evolution instructs development of AA. One

of the more robust of these areas is data mining, where several life-cycles exist. Other

areas with specific life-cycles include mixed reality system design and control system

software design.

Several data mining system development life-cycles have been proposed, including:

Knowledge Discovery in Databases (KDD) [84]; Sample, Explore, Modify, Model and

Assess (SEMMA) [178]; Two Crows [179]; Refined Data Mining Process (RDMP) [180];

and CRoss Industry Standard Process for Data Mining (CRISP-DM) [85]. The

CRISP-DM process has been the most widely adopted [181], with its two-part nature

setting it apart from other life-cycles. Specifically, CRISP-DM defines a data mining

process across different levels and then provides a methodology to implement data

mining systems.

Another specific application of system development involves human-computer in-

teraction within mixed reality systems (where entities must simultaneously act in

96



both real and virtual worlds), [182] creates the Extended 2 Tracks Unified Process

(2TUP) to address interaction requirements. Di Orio et al [86] create a development

life-cycle for control systems within the automotive industry considers not only best

practices, but also actual systems in place within the industry.

The data mining, mixed reality, and control system software development life-

cycles provide examples for the AASDLC, by extending several development principles

to a specific focus area. Most of the life-cycles address development as an iterative

structure and all of them identify specific concerns that must be addressed due to the

peculiarities of the chosen field.

User-Centered Design.

User-Centered Design (UCD), also referred to as User-Centered System Design [110],

is “a process focusing on usability throughout the entire development process and

further throughout the system life-cycle.” The UCD system development life-cycle

involves six steps: vision and plan, analyze requirements and user needs, design for

usability, evaluate use in context, feedback/plan the next iteration, and construct

and deploy. Like several other life-cycles, such as CRISP-DM or the spiral model,

the UCD system life-cycle is iterative, with many steps and/or sets of steps repeated

as information is gained in the process. To maintain a usability focus, the life-cycle

evolves around a set of 12 key principles. Applying these principles, the five most

important UCD methods for a successful project according a survey of UCD practi-

tioners [183] include: field studies, user requirements analysis, iterative design, and

usability evaluation, and task analysis.

Past research efforts [41,184] have indicated that UCD concepts could improve AA

system development. Although UCD may not have a process that explicitly addresses

adaptive automation, lessons learned from UCD implementations provide insight into

97



moving AA systems from the design models that already exist into implementations.

These lessons become increasingly apparent with common AA goals such as reducing

workload or increasing task throughput.

4.3 Methodology

The Adaptive Automation System Design Life Cycle (AASDLC), shown in Fig-

ure 21, creates a methodology to address the design and implementation of adaptive

automation. The process consists of six phases, each with component parts. Like the

spiral model, CRISP-DM, and UCD processes; the progression through the process

is not always linear, especially when expectations of design do not meet the reality of

implementation. Further, like the CRISP-DM and 2TUP models, the process is di-

vided into 2 stages, the first focused on the design and implementation of the system

before automation and the second on the design and implementation after adaptive

automation is added. This two-stage division permits simplification of the design

as it reduces the complexity created by trying to design an AA without a complete

understanding of the system in place. This section describes each life-cycle phase,

comparing the phase to similar stages in existing life-cycles and proposing questions

designers should consider.

Phase 1: Define Adaptive Automation Goals.

The first phase in the AASDLC is to define the goals of the system and the AA

goal. An adaptive automation goal documents why the human and machine are

interacting within the system in an adaptive manner. AA goals should not define

how the human and machine will interact, but rather provide a theoretical reasoning

for why adaptive automation is being used in a specific instance. The AA goal should

be framed in the context of the overall system’s goal.

98



Adaptive AUtomation Syswm 
Development Life-Cycle (AASDLC) 

... ~·- · ··~ .... 

........... • 

.. /~--· -··­

•. ·-... 

/.······ 
· .. ..... .... 

.. . . . . . . 
.. :'· \ 

.· : 

: :' 
: : 

./ . .: 
:::·# 

Figure 21 . A model showing the progression of phases w ithin t h e adaptive automation 
system development life-cycle (AASDLC) . 

Successfully achieving a well-designed AA goal should improve the chances of 

the system achieving its goals through the removal of adverse inputs and effects 

and/or increasing positive inputs and effects. A common AA goal is to reduce human 

workload within the overall system, while permitting the user to maintain a high level 

of situation awareness or practice skills which can be important during automation 

failures [42]. 

Workload reduction, particularly when t he environment introduces elevated work­

load, increases t he system's ability to perform more tasks during periods of excessive 

task load and allows the human and machine to perform successfully during condi-

99 



tions that would otherwise require multiple people or result in mission failure. This

AA goal aims to remove the negative effects of a high human workload and should

be as specific as possible, indicating the level of task load to which the system must

respond.

The designer should also determine if AA is required to achieve the overall goal,

as a system employing AA will be more complex than a nonadaptive system. Further

design phases and implementation may change the designer’s understanding of the

previously defined AA goal’s ability to actually help achieve the overall system goal,

as indicated by the feedback loops to phase one in Figure 21.

Comparison to Other Life-Cycles.

The ‘define AA goals’ phase in the AASDLC is similar to the ‘Determine Over-

Arching Goal’ step in the FTTDPM, the ‘Vision and plan’ phase of UCD and the

‘Business Understanding’ step of CRISP-DM. The define AA goals phase takes the

context of the overall system, and specifically addresses how practitioners intend to

use AA to their advantage.

Designer Questions.

• What is the overall system goal? How can AA help achieve this goal? How

could AA hurt this goal?

• Why is AA required? What do we want the AA system to adapt to?

• Is AA required to achieve this goal? Is there a simpler system that achieves this

goal without adaptability?

100



Phase 2: Align t he design and system. 

As shown in Figure 22, aligning t he design and t he syst em is a cyclical two-fold 

process involving capturing the system in t he design and implem enting the design 

in the system. To capture the system as implemented one must capture every system 

task, whether the functions are instantiated as human tasks or machine tasks. An 

accurate human-machine system design provides better insight into how AA can be 

added. While this phase appears to assume that an existing technical system exists, 

this is not required but might include any system(s) , technical or procedural, which 

accomplishes the goals of t he system under design. Two tasks are needed to implement 

the design in a system. First, the designer must ensure all functions represented in 

the design are performed in the system. Second, the designer must ensure that each 

function is instantiated properly as a human or machine task according to design 

specificat ions. 

Align the design and current system 

.. _-I Implement design in real-world system 1--• 
F igure 22. T h e a lign design a nd system phase of the AASDLC, ensures the syst em 
implem ents the d esign and t he design properly represents t h e system . 

A description methodology must be used to design a new system or capture the ex­

isting one. Several description methodologies exist , including ConcurTaskTrees [124], 

DIANE+ [122], GOMS [121], and HAMSTERS [129]. However, the FTTDPM [1] was 

101 



designed specifically to help determine where AA could fit well within a system. As

such, the Function Relationship Diagrams (FRD) and Task Relationship Diagrams

(TRD) of the FTTDPM form the underpinnings of the AASDLC. The FRD captures

all of the functions performed within a designed system, their temporal dependence,

and the information which must be passed from one task to enable the subsequent

task. The TRD then instantiates each function either to a human or a machine.

Using the concept of inherent tasks, which include functionalities not present when

a function is unallocated, but arise only when the function is assigned to a human

or machine entity (e.g. a human-machine interaction task that arises when function

control moves from a human to a machine), the TRD then allows the practitioner to

determine where AA could benefit the overall system by considering several factors

including the information that must be conveyed between the human and system to

facilitate the handover of tasks between the two entities. The end product of the

FTTDPM, the Auto-TRD, is a TRD that represents AA nodes within the design.

Capturing the system involves steps 2-6 of the FTTDPM, ‘identify high-level func-

tions,’ ‘decompose functions,’ ‘construct function relationship diagram,’ ‘instantiate

functions to tasks,’ and ‘separate inherent tasks’ respectively.

Additionally, in the case where there is no pre-existing system, implementing

the system as currently designed becomes paramount. The main reason for this is

to help determine the limits of the automation. Without implementing the TRD

into an active system, an AA could be designed that is not feasible. This phase

involves several iterations of the process in Figure 22–adjusting the TRD and changing

system implementation until the two align. To move beyond this phase, the system

implementation need not be to the level of an end user system.

102



Comparison to Other Life-Cycles.

Capturing the system design within the TRD overlaps with a few different life-

cycles in different ways. Within UCD the ‘vision and plan’ and ‘design for usability’

steps are important in capturing the system design, but it could overlap with other

steps as well. Within the CRISP-DM framework, the capture system as implemented

portion of this phase aligns under ‘business understanding.’ On the other hand, the

implement design in system portion of this phase falls in disparate steps: aligning

well with ‘prototyping’ in the spiral model and the ‘data understanding’ phase in

CRISP-DM.

Designer Questions.

• Which functionality in the system is allocated as a human task and which as

machine?

• Who would better perform each function in the system, the human or the

machine?

• What inherent functionalities (extra tasks) are present that may not be captured

in the initial designs?

• Will automation be feasible, timely, and effective for the items allocated to the

machine?

Phase 3: Verify design and implementation alignment through user

testing.

The next phase of the AASDLC utilizes user testing and feedback to verify design

and system alignment, prior to AA inclusion. User feedback designed along two

dimensions, quantitative vs. qualitative and directed vs. undirected, allow for both

103



inductive and deductive insights of how well the system meets AA goals. Figure 23 

shows the phase in its ent irety. 

Phase 3: Verify alignment through 
user testing (Pre AA) 

Develop 
Feedback Devices 
Quantitative Qualitative 

Directed -----.... 
Directed ' ' ' .. Quantitative Qualitative 

Undirected Undirected 

.. 

Run a user test without 
adaptive automation 

Transform feedback 
into actionable insights 

----------

Capture insights 
in design 

Implement insights 
in system 

.. 
' ' I • • I 

I 
• • • 

Figure 23. The verify a lignment through u ser t est in g (Pre AA) phase of the AASDLC, 
gathers feedback from users to enab le to a b ette r understanding of the syst em before 
AA is added. 

Feedback devices take one of two forms, quant itative or qualitative. Quantitat ive 

feedback is numerical and allows the practitioner to compare responses mathemati-

104 



cally, while qualitative feedback allows the user to elaborate on a topic of interest–

which can make comparison difficult. The purpose of obtaining both forms of feedback

is that quantitative feedback empowers deductive reasoning, while qualitative feed-

back feeds inductive reasoning [185]. Quantitative feedback can be used deductively

to prove or disprove an already held assumption. As such, quantitative feedback helps

us begin at the goal and find user data to either prove or disprove whether the overall

system goals are met in the system. Qualitative feedback can be used inductively to

build the system’s overall goal from user experiences. We can use qualitative feedback

from user observations to make broader assumptions about how the system works in

practice, thus deciphering what the users see as the goal of the system, apart from

any preset notions of the goal.

Feedback is then gathered either in a directed (e.g. prompting feedback on specific

items) or undirected manner (e.g. asking for general feelings on the system). Directed

feedback can be used to ensure that feedback is gathered surrounding a specific in-

terest item. Directed feedback can give insight into the design itself or even directly

address whether the goal is met. Undirected feedback, on the other hand allows for

unearthing more general sentiments or beliefs about the system that would not be

readily apparent.

Example feedback devices from each of the four quadrants, shown in Figure 23

include: Asking each user to verify the system TRD by adding or removing items

would be a form qualitative directed feedback. A quantitative directed feedback

mechanism could be to ask each user to rate the difficulty or importance of each task

within the system TRD. A qualitative undirected feedback mechanism for helping

with AA design could include asking for sub-tasks within the system that would be

useful to have the computer perform intermittently. Quantitative undirected feedback

measures must be collected within the system without directing the user to a specific

105



focus, requiring the system to record user performance data within the environment

such as time on task or performance score.

A collection of all four types of feedback provides a more robust design and imple-

mentation alignment, but care must be taken to focus feedback on the AA goal. If the

goal of AA is to relieve the user of stress at all costs, feedback geared toward work-

load should take precedence over feedback determining engagement levels. The last

component of feedback device design is to form a prediction of the feedback that will

be gathered by each device. Forming this prediction allows the practitioner to have

a point of comparison between “how he or she expects the human-machine system to

behave” and “how it actually behaves during user tests.”

Designing the user test should ensure that a sufficient number of users are sampled,

the users sufficiently represent the class of users who will use the end system, and the

task environment sufficiently mimics the target task environment. During the user

test, feedback devices should be checked to address any unexpected errors. If any

devices provide no, incomplete, or unexpected feedback; they can be corrected at an

early stage. Improperly designed feedback devices or unexpected feedback can cause

a complete repeat of the user test.

Once the user test is complete, the feedback received must be transformed into

actionable insights. Transforming feedback into actionable insights for verifying de-

sign and system alignment begins by comparing the feedback predictions to the user

results, and then creating specific changes that can be made to the design or system.

Feedback that differs even slightly from expectation indicates a flaw in the prac-

titioner’s understanding of how the system behaves, and therefore a problem with

alignment. These insights should then be captured in the design and implemented in

the system.

106



Comparison to Other Life-Cycles.

The ‘verify design and implementation alignment through user testing’ phase of

the life-cycle compares well to the ‘Feedback’ and ‘Construct’ phases of UCD, giving

the practitioner insights that may be missed due to the level of involvement in the

design of the system. This phase also imitates the incremental model’s approach to

deploying a system multiple times, but avoids the need to completely step through

the entire process each time.

Designer Questions.

• Does user sentiment agree with our design of the system? If not, where?

• Where do users think AA would benefit the system?

• Does data gathered from user interaction with the system support the flow of

information in our design?

• What hidden factors did we not capture in our initial system design documents?

Phase 4: Add adaptive automation to design and system.

The fourth phase of the AASDLC sets it apart from other system development life-

cycles. The goal of this phase is to add AA to the system, resulting in a system with

an integrated AA element, trigger, and interface along with an Auto-TRD that reflects

the previous TRD with AA nodes identified. First, this phase adds an automation

element. Then, an AA trigger is designed that adaptively changes between levels of

automation. Finally, the design of how the handoff will be performed as automation is

engaged (i.e. the human-machine interface) is crucial in that situational information

must be effectively communicated between entities. These three stages are highly

107



interconnected and influence each other. T he following paragraphs address each of 

the stages illustrated in Figure 24. 

Phase 4: Add adaptive automation 

Determine AA 
locations 

Formulate and implement adaptive automation 

Formulate 
automated element 

Formulate 
AA trigger 

Formulate 
AA interface 

Implement 
automated element 

Implement AA 
trigger 

Implement AA 
interface 

Figure 24. T h e add adaptive autom ation phase of the AAS DLC creates the AA, which 
cons ists of an au tomat ed elem ent, AA t rigger , and AA interface. 

A decision must be made as to what port ion of t he overall system's task will be 

automated. This process has been previously outlined in step seven of the FTTDPM, 

'Define Adaptive Automation States. ' In t his method, the designer considered t he 

number of possible automat ion stat es to be applied (adapted among) , the difficulty 

or complexity of task handoffs, node clustering of tasks into a unit to be automated, 

branch count ing (e.g. count ing the number of pieces of information that must be 

108 



communicated between the human and machine entities), and comparing the task

load imposed by each task or cluster of tasks which might be potentially automated).

Results from previous phases of the AASDLC can help influence the choice of an AA

location. Once a location is identified, the next three stages will follow a rough order,

but will overlap and create cycles in their design and implementation.

The first stage of AA formulation and implementation is to formulate and imple-

ment the automation element. It is important to only automate one portion of the

task at a time. If there are multiple elements of the task that will be automated–

switching between many discrete levels or even continuously adjusting some portion

of the task–adding the automations one at a time will account for unexpected conse-

quences without having to determine which AA element is responsible, unless there

are interaction effects. The actual formulation of the automation element is a soft-

ware engineering problem, wherein some automated system is engineered to perform

a portion of the task.

Adaptive automation triggers will fall into one of several types according to the

taxonomy created by Feigh et al [3], as shown in Figure 25. Further, all triggers

switch between discrete automation settings or adapt the automation in some way

on a continuous scale. All adaptive automation triggers can be modeled as a distinct

pairing of trigger type (from the taxonomy) and mode (continuous or discrete) and

the combination of multiple simple triggers can produce ever more complex trigger

designs.

The formulation of the associated human-machine interface begins after complet-

ing the AA trigger. When determining how to pass information from the human to

the machine and vice versa, note what information about the previous tasks must be

communicated between the human and machine, as identified in the TRD. The fact

that this transfer of knowledge requires perceptual, cognitive, and motor resources on

109



Taxonomy 

of Triggers

Spatio-

Temporal

Task/Mission-

Based

Environment-

Based

System-

Based

Operator-

Based

Operator 

Initiated

Operator 

Measurement

System 

State

System 

Mode

Environment 

Event

Environment 

State

Mission 

Event

Task 

Status
Time

Location

Figure 25. Feigh et al ’s taxonomy of adaptive automation trigger types adapted from
[3].

the part of the human highlights the reason to select the portion of the automated

task based upon the complexity and number of elements of information that must be

transferred. Insight into the human-machine interface design theory and practice is

beyond the scope of this research, and we point the reader to the work of Inagaki [186],

Kaber et al [41, 71], and Miller et al [187].

Comparison to Other Life-Cycles.

Since we are adding AA to an already implemented system, the life-cycle is split

into two parts: pre- and post-AA. With this in mind, the most compelling comparison

can be made within domain specific system development life-cycles. Most domain

specific life-cycles, such as 2TUP, contain similarities to generic system design life-

cycles, but add specific process tasks and re-arrange steps to normal methods based

on domain insights needed at certain points in the problem. These added steps

influence the proceeding process elements. The AASDLC sees some of the same

consequences: the post-AA phases of the process imitate the pre-AA phases, but they

have differences due to the placement of AA in the system at this specific juncture.

110



Designer Questions.

• What locations in the TRD prove most conducive to AA based on the FTTDPM

AA identification tools?

• How can we automate the chosen element within the task structure? What

impacts will the specific chosen method have on the surrounding elements?

• What type of AA trigger should we use based on the overall AA goal? What

mode (continuous or discrete) should we use to adjust the automation?

• What information needs to be communicated between entities during AA hand-

offs? How can the human-machine interface effectively communicate this infor-

mation?

Phase 5: Verify AA design and implementation alignment through user

testing.

The user test for phase five is similar to the methods used in phase three. The

difference is that the feedback should tie specifically to assessing the goal of the AA.

The goal of this phase is to verify AA designed and implemented reflect each other.

Data gathered through user testing should allow the practitioner to determine whether

or not the design choices and implementation reflect what real users experience in

the system.

In this phase, the FTTDPM’s idea of inherent tasks is useful. When interacting

with a system that is adaptive, users may discover new functions that are inherently

assigned to them that were not considered previously. The arrival of unforeseen

inherent tasks should prompt a reiteration of this phase or a complete revisiting of one

of the previous phases. Both users who participated in previous system tests without

AA implemented and users who’ve never seen the system before should participate

111



in this phase. The differences in how the users perform the task can reveal unseen 

biases in design and implementat ion. 

Verify AA design and implementation 
alignment through user testing 

Design 
Feedback Devices 
Quantitative 

Directed 

Quantitative 
Undirected 

Update AutO-TRD to 
reflect actual 

implementation 

Qualitative 
Directed 

Qualitative 
Undirected 

Update 
implementation to 

reflectTRD 

Figure 26. The verify AA alignment through user testing (Post AA) phase of the 
AASDLC, utilizes user feedback to ensure the system operates as expected after AA 
is added. 

Comparison to Other Life-Cycles. 

Similar to phase t hree, this one is also similar to the 1Feedback' and 1Construct ' 

phases of UCD, specifically helping to illuminate unforeseen consequences of AA. 

Designer Questions . 

• Does the syst em as implemented meet its AA goals according to user sentiment 

and performance? 

• Can the users understand t he implemented AA? Does it act as expected? 

112 



• Does data gathered from user interaction with the system support the Auto-

TRD design?

• What hidden factors did we not capture in the Auto-TRD? Do we need to

update the Auto-TRD or implement a missing feature?

Release Implemented System.

The last phase of the AASDLC is to release the system to users in the desired

environment. By this time the overall system should meet the desired system goal

and the AA goal should be discernibly met. Although design and implementation

may be done, further updates may come once the system is put into practice and the

practitioner should expect further iterations on different phases of the life-cycle. When

the system is placed in the field, some feedback should be collected to insure that

performance as expected from laboratory studies transfers to the final environment.

Comparison to Other Life-Cycles.

Since the goal of all system development life-cycles is to create an end product,

this phase is similar across all life-cycles. However, what sets the AASDLC apart

from the rest is that the release criteria of the end product is incumbent upon not

only meeting the overall system goal, but also the underlying AA goal. If this is not

met, the AA system may not work as expected.

Designer Questions.

• Does the system as implemented meet the overall system goal? Does it meet

the overall AA goal?

• To which situations does the system respond well in operation? To which does

it respond poorly?

113



• What changes could have been made to the design process to improve the

transition to the real-world?

• What fundamental changes are apparent in the system that need to be commu-

nicated to the end users of the system?

4.4 Use Case

This section examines the AASDLC with an example adaptive automation system

development. The authors designed and implemented AA in the Space Navigator [1,

138] tablet computer game. The application of the AASDLC to Space Navigator that

follows provides an example of how the AASDLC can aid the development process,

given both good and bad decisions.

Phase 1: Define Adaptive Automation Goals.

The overall goal of the Space Navigator system was to provide a test environment

to evaluate how users interact with an adaptive automation. Specifically, the AA

goal was to have the machine take over for the human in an adaptive manner and

perform a portion of the overall task similarly to how the human interacting with

the system would perform it. Doing this at a time when ships appeared at a rate

that exceeded the human operator’s ability to route the ships, monitor their paths,

and re-route if necessary. The reason for performing a portion of the task similarly

to a human rather than optimally was to create a system for a research project to

identify the effects of similarity of action on human-machine teams. The resulting

system will allow researchers to test how users respond to adaptive automations that

act similarly to how they would in a given situation, in comparison to AAs that act

dissimilarly.

The agent was to permit the user to safely route more spaceships to a planet than

114



they could on their own, thus improving their scores under high task load conditions,

while permitting them to remain engaged in the game. Although the system did

not exist, similar games and an early prototype had been constructed. A trajectory

generation game was chosen as the environment because it provides a complex and

dynamic environment, while allowing the player only one input response (drawing

trajectories). The particular game design also included special characteristics includ-

ing a point system that provided a unitary award (e.g. no leveling-up concept was

used) and task load could be manipulated by the practitioner by changing the number

of NFZs or the rate of new ship arrivals.

In summary, the overall system goal was clear: design a system to gain as many

points as possible. The AA goal was relatively clear: allow the user to gain more points

during periods of high task load than they could otherwise achieve, while permitting

the users to remain engaged in the game. Notice this last goal has two potentially

competing sub-goals. It might be possible to remove the user and obtain higher point

scores but as user engagement is a key part of the requirement, such a solution is

not acceptable. It is the competition of these goals which bounds the problem in a

way that requires the automation to adjust its behavior in response to the task load

and the user’s response to this task load, making AA desirable. Further note that a

more measurable goal could have been established, such as insuring that 90% of all

spacecraft arrived at a planet for spacecraft spawn rates less than 1 spacecraft per

second.

Phase 2: Align the design and system.

Since the system was not already built, phase two began with designing the system.

The system design was performed using the FTTDPM. The resulting TRD–shown in

Figure 27 was used to perform the implementation, and tweaks to the system were

115



captured in the TRD during implement ation. 

i""ii;,;t~·; 

r~+-. i t:V ······... : 
r~~;#;J ······... @ 

rfl ·················· .... 
~ ···· .... 

~:? ..... · · ·~::~~-~::;· ..... {~~~-~~~) ············ ... 
·· ... : 

/Adi~~~-i.;\ ~ .. -·~;;;.;.~··.. - .. ~ 
. -~~. (~~~) i ~oofty ; ~~~hos 
'- ::,,;;;;;;;' ,,,, ;;;;:o::;:'::I;/ 
Gc.-a set oi\ Adjust,.. 

possible routes} existing fOUR' 

~ ~ 
( ~·--)--............................... {~#:.;) 

Figure 27. The Space Navigator TRD as captured during phase two of the AASDLC 
with rectangles representing machine functions, ovals representing human functions , 
and the C / P blocks indicating inherent tasks which occur as information is transmitted 
between the machine and human; adapted from [1]. 

One import ant insight gained about the system came from designing the feed­

back system within Space Navigator. In t he game as originally designed, the human 

port ion of the task is strict ly selecting a ship and drawing its trajectory. However, 

several aspects of the game are performed by the machine: ship movement , bonus 

spawns, ship scoring, etc. To help the human understand the system and raise t he 

humans' situation awareness, several implementation changes prompt ed an under-

standing of functions that needed to be added to the FRO and assigned as machine 

tasks in the TRD. For example, drawing waypoints for the ships' trajectories was t he 

user's responsibility, but displaying where these points were for ot her ships was t he 

responsibility of the system. By understanding what "should be communicated to 

116 



the user,” the practitioner can better understand what tasks the machine is actually

performing. By the end of this phase, Space Navigator was implemented directly

from the design, there were no known problems with the alignment of the system and

the implementation.

Note that in reality a significant error was originally made within Figure 27 which

occurred due to the definition of the machine. In this environment, as in many AA

environments, the machine potentially has many different functions. In the present

example, it both generates the environment and supports the automated agent which

interacts with the human and environment generator to conduct tasks that the human

would have conducted. In the initial implementation, the environment generator was

aware of the information shown as rectangles in Figure 27 and so these tasks were

shown as machine tasks. However, from the human point of view, the intended view of

these diagrams, these tasks were performed by the human as they had to perceive the

representation of the ships, planets and other elements from the screen and decide

upon the proper relationships. Therefore, this diagram should depict these tasks

as human tasks, unless they were being delegated to the automation agent. Once

this occurs, the diagram changes as shown in Figure 28. A failure to recognize this

distinction at this point will be shown to affect subsequent design phases.

Phase 3: Verify design and implementation alignment through user

testing.

In order to see how users interacted with the Space Navigator environment and to

ensure design and implementation alignment, an initial user test captured a variety

of data. Data was collected from 32 participants playing 16 five-minute instances of

Space Navigator each. Although data was collected from each of the four feedback

quadrants discussed in Section 4.3. Pros and cons of the actual feedback devices

117



implemented for the Space Navigator user test are discussed here.

Quantitative directed: The quantitative directed feedback sought in the experi-

ment dealt with perceived workload. The NASA Task Load indeX (TLX) [188] and

Instantaneous Self Assessment of workload (ISA) [189] batteries were presented to

users after each instance. Table 4 shows the mean workload ratings reported across

all users during user testing. The variations correspond to different settings in the

Space Navigator environment with relation to spaceship spawn rates and number

of NFZs. Surprisingly, the ISA indicated no change in workload as the ship spawn

rate or NFZs increased but did indicate an increase in workload for the fast spawn

rate/increased number of NFZ condition. Mental and temporal demand as well as

frustration, as expected, generally increased with increasing spawn rate and the num-

ber of NFZs. Unfortunately, this assessment did not provide insight into the tasks

which induced the most workload, which might have been more useful in designing

the system. Therefore, future efforts might include using the TRD decomposition to

have users rate the difficulty or importance of each sub-task.

Table 4. Mean and standard error for ISA (1-5 scale) and NASA TLX (0-100 scale)
ratings as a function of new spaceship spawn rates (fast [1 ship/2 seconds] or slow
[1 ship/5 seconds]) and number of no-fly zones present (2 or 4) during user testing in
Space Navigator

Slow/ Fast/ Slow/ Fast/
2 NFZs 2 NFZs 4 NFZs 4 NFZs

ISA Workload 3.15± 0.10 3.16± 0.08 3.15± 0.09 3.29± 0.09

Mental Demand 50.6± 2.2 51.9± 2.0 52.0± 2.0 54.4± 2.1
Physical Demand 39.7± 2.3 38.2± 2.1 39.1± 2.2 40.9± 2.2
Temporal Demand 49.7± 2.2 51.2± 2.2 50.6± 2.2 53.1± 2.3

Frustration 40.1± 2.1 39.6± 1.9 41.3± 2.1 42.4± 2.0
Effort 48.2± 2.1 49.1± 2.0 48.4± 1.9 50.5± 2.0

Performance 63.1± 1.9 61.6± 2.0 60.6± 2.0 59.3± 1.9

Qualitative directed: Several post-test survey questions proved too vague to help

ensure design and implementation alignment. However, questions involving different

118



types of AA that would help the user in performing the task were useful. Users 

provided several ideas t hat the system creators had not considered. 

Initial TRD Representation of "Ship Selection" Task 

Iterated TRD Representation of "Ship Selection" Task 

10 ships 
without 

F igure 28. T h e 'select sh ip' sub-task of the Space Navigator T R D , comp arin g repre­
sentation b efore and after the AASDLC use r t esting processes. 

Quantitative undirected: The quantitative undirected measures proved to be the 

119 



most effective measures of the user test. For each user, every point scoring event

was captured (e.g collisions, bonus pickups, etc.) and several elements of the current

state were captured every time the user interacted with the system (i.e. at trajectory

draws). Although having effective feedback here was useful in designing the AA device

itself, it did not prove useful in helping to determine what inherent information the

user was utilizing to make decisions before acting.

Qualitative undirected: The qualitative undirected measures consisted of asking

the users their general thoughts about the game environment. Although this infor-

mation was not as useful in specifically aligning the design and implementation it

did prove useful in understanding how users described and related to the elements of

the game. For example, when users would describe the bonuses within the game as

‘bubbles’ or ‘moon rocks’ it helped us to describe the system better to future users.

Phase 4: Add adaptive automation to design and implementation.

After phase three, we believed the implementation and design were aligned well

and moved forward to adding AA to the system. However, the noted problems with

design and implementation alignment coupled with poor AA trigger design ensured

problems with the actual implementation. These problems manifested themselves in

the user testing in phase five. The design decisions made at this phase are explained

in the following paragraphs.

Automated Element.

Designing the automated element began with a run through the FTTDPM. As

outlined in previous work [138], the trajectory draw function was chosen as the AA

location. As previously explained, the overall AA goal was to have the automation

perform a sub-task similarly to the human interacting with the system. The overall

120



AA goal then become more specific, drawing trajectories similarly to those of a specific

person to improve the user’s score while permitting them to remain engaged with the

game.

The specific location for the AA is illustrated in Figure 27, including everything

from the ‘Select best ship to move’ node all the way through the ‘Draw a line from

ship to destination’ node. Although a few branches were expected to be crossed for

the inputs to the ship selection process, these were dismissed as negligible as there

were only five branches. However, the later TRD in Figure 28 shows that the actual

number of inputs was at least nine. Choosing to automate below the ‘Select best ship

to move’ node would have only required the crossing of one branch as opposed to the

original five.

Adaptive Automation Trigger.

Once the automated element was decided, the trigger to adjust the automated

element was designed. First, we needed to decide the mode of the trigger: would we

be cycling between some set of automation settings (discrete), tuning some setting

of the automated element (continuous) or some combination of the two. A simple

trigger mode was chosen. Essentially there would be a discrete binary trigger: either

the automated element would be on or off. Next, the trigger type would be decided.

Part of the goal in aiding the system was to determine when an automated aid would

be helpful to users. This was determined to be when the user was overwhelmed by

the system.

At this point, two poor design choices were made: multiple trigger modes were

inadvertently added and the trigger type did not align with a minor AA goal. The

trigger was designed as a system-based trigger based on the time a specific element

had been on the screen without being acted upon. This first failed the goal of creating

121



a trigger that was a simple binary trigger. Two criteria needed to be met in succession

for the trigger to fire: (1) has the spaceship been on the screen for x seconds and

(2) does the spaceship already have a trajectory. The trigger was represented poorly,

as a single binary decision after its implementation. Our decision failed to account

for the fundamental difference between drawing the initial trajectory for a ship and

re-drawing a non-ideal trajectory.

Additionally, a minor goal of the AA had been to determine when the user was

overwhelmed by the system. We assumed that this could be teased out of the system

by determining if ships had been on the screen for a period of time without being

acted upon (i.e. the person had not yet had a chance to act upon the spaceship

due to time constraints). However, we discounted the fact that users may not act

upon a ship for reasons other than being overwhelmed. A better trigger design would

have either accounted for a system-only trigger type (e.g. the number of ships on the

screen) or a user-based trigger (e.g. increased heart rate).

Adaptive Automation Interface.

Coupled with the poor AA trigger design decisions the misrepresentative design

from Figure 28 led to a poor AA handoff. Based on the placement of the trigger,

a well-designed handoff would ensure that the AA trigger would fire at a location

that would result in relatively little information needing to pass, in this case, from

the human to the machine. However, based on the accepted TRD model at the

time and the time-based trigger, control of another sub-task was usurped: spaceship

selection. Since the spaceship for which automated trajectories would be drawn was

designed as a function of time, human influences into the selection decision (e.g.

other ships, distance to destination, available bonuses) were ignored. The resulting

similar trajectory drawing system would be up against a glass ceiling: no matter how

122



similarly the trajectories represented the human’s response to the given state, they

were doomed to be a poor representation of human trajectory draws because the user

would never have SELECTED that ship in the first place.

A second, understated problem arose at the back end of the AA. When the machine

gave control of the system back to the human a quirk in the AA interface design proved

problematic. The automation was allowed to draw trajectories instantaneously, and

new trajectories were added to the screen all at once. This allowed the system to draw

trajectories at a much faster rate than the human could and also made it difficult for

the human to decipher which trajectories were automated. Therefore, the individuals

were often unaware that the automation had drawn a trajectory. This unexpected

action decreased human trust in the system and increased the cognitive workload of

the human during handoffs.

Phase 5: Verify design and implementation alignment through user

testing.

To verify the alignment of the design and implementation after AA, another user

test captured a variety of data. The data was collected from 35 participants playing 17

five-minute instances of Space Navigator each. The tests included: five initial games

with no AA followed by three sets of four games cycling through four AA settings.

The first setting was no automation, the second consisted of the designed similar

automation. The third and fourth settings were designed as comparison measures.

One automation was programmed to always draw a straight line from the ship to the

destination planet and the second automation was programmed to choose a random

trajectory from the past user game-play database. The final two settings were used

as an experimental comparison. This design choice for the user test proved extremely

beneficial in diagnosing the problems from phase four. By providing a comparison

123



system, the user test allowed us to identify the design issues that were due to poor AA

design choices rather than problems arising from the automation’s ability to perform

the task.

The data collected (across all the feedback quadrants) from the 35 users allowed us

to identify problems with the design. The most obvious sign of a lack of implemented

AA alignment with the overall AA goal was that the designed AA system encouraged

users to play the game drastically differently than they had without automation.

The system as implemented allowed users to rely on the automation to draw all

trajectories and engage in a trajectory correction task. Figure 29 shows the drastic

change in trajectory draws that occurred as a result. Additionally, this game-play

change was consistent across all AA settings, ensuring that it was not due to the

trajectory generating automation mechanism, but the trigger.

The second sign of alignment problems was the directed and undirected qualitative

user feedback. Users consistently identified the largest factors impacting the success

of their interaction with the AA systems as the predictability of the automation and

the perceived ability of the automation. Predictability and ability of the automation

are well documented factors in human-machine interaction, but the fact that these

factors played as heavily as they did into AA interaction suggested that the AA system

did not meet the overall AA goal. Only one user of the 35 was able to discern that

the system was playing in a similar manner, with several users specifically indicating

that the unpredictability of the system did not allow them to understand how it was

creating trajectories.

Revisiting Phases 3-5.

Based upon these results, the previous phases are revisited. An informal interview

of three participants identified that the TRD did not accurately reflect the system as

124



 Manual  Automation 1  Automation 2  Automation 3

N
u

m
b

er
 o

f 
T

ra
je

ct
o

ri
es

 D
ra

w
n

0

50

100

150

200

250

300

 Manual Initial Draws per Game
 Manual Redraws per Game
 Automated Initial Draws per Game
 Automated Redraws per Game

Figure 29. The number and type of trajectory draws as a function of automation type
in Space Navigator.

designed. User feedback and game-play data were then used to redesign the TRD,

identifying problems with the designed system. Two changes were made to the system

with two goals: (1) ensuring the automated element within the system was better

isolated from the rest of the sub-tasks within the system and (2) ensuring the machine

communicated its actions more clearly to the human.

The first change was to move the location of the initial AA trigger from above

the ‘select best ship to move’ node, as shown in Figure 28, to below this node. This

allowed the interface to only require one type of input to represent all of the user’s

initial inputs to the selection decision, rather than the initial 10 inputs that the system

must represent in making its decisions of which ships to automate.

125



The second change was a two-fold choice made to improve the human-computer

interaction by updating the way that the machine’s trajectory draws were communi-

cated to the user. First, human and machine trajectories were shown with different

colors, as opposed to only one color for all trajectories. Second, the ships trajectories

were drawn to the screen one dot at a time rather than all at once, to anthropomor-

phize the machine’s action choices in an understandable manner.

These changes were updated in the TRD and implemented into the system. An

experiment comparing the previous AA with the revised AA showed that the iden-

tified changes achieved the two goals. The users surveyed stated a distinctly better

automation interaction experience, citing both the improved understanding of the

system due to the removal of unexpected machine actions (change 1) and the clar-

ity gained from understanding what actions the machine was taking and had taken

(change 2). Additionally, in a head-to-head comparison of the two automation set-

tings (before and after changes), users unanimously chose the improved automation

as more similar to the way they would have drawn trajectories than the previous

automation system.

Phase 6: Release implemented System.

The release of the implemented system is still ongoing. As the process continues,

further insights are developed and the phases of the process reiterate accordingly,

leading to a stronger system implementation and better understanding of how the

design represents the reality of this implementation. Iterating through the changes

throughout the process has shown the usefulness of a cyclical process and the clear

need for design and implementation refinement throughout the process.

126



4.5 Conclusions

The Adaptive Automation System Development Life-Cycle, a beginning-to-end

system development life-cycle for designing and implementing an adaptive automa-

tion system. The AASDLC allows for significant flexibility in its actual execution, as

most systems will not follow a linear path from conception to system actualization.

The UCD focuses of the life-cycle enable the practitioner to ensure that the system

can account for these deviations by allowing user feedback to ensure design and im-

plementation align throughout the process. Additionally, separating the process into

pre- and post- AA sections allows the practitioner to apprise the gains provided by

AA within the system.

Iterating through the AASDLC’s phases of alignment and verification through

user testing produces an implemented system that works as designed and a system

design that reflects the reality of that system. These products give designers a better

understanding of the operational system, enabling them to effectively communicate

the systems capabilities to stakeholders and train users on the implemented system.

Iterating through the process creates a better understanding of how adding AA to

the system can enable a better human-machine system to meet the overall system’s

goals.

127



V. Conclusions

This dissertation presented a path for system designers to take practical adaptive

automation (AA) goals and move them into a real-world AA system. Specifically, we

have addressed the question “How do we design and implement a real-world adaptive

automation system around a specific adaptive automation goal?”

The answers to this question provide three contributions to the research com-

munity. The Function to Task Design Process Model (FTTDPM) for AA system

design, Chapter II and [1], aids system designers in defining AA goals and locating

areas in a system that would benefit from AA. A real-world AA system developed

as the automation portion of the system, Chapter III and [87, 138], gives researchers

an individual player modeling method that updates in real-time. The AA devel-

opment work all ties together under the Adaptive Automation System Design Life

Cycle (AASDLC), Chapter IV and [81], establishing a process for taking the AA de-

signs derived from application of the FTTDPM and transferring them into real-world

systems.

The FTTDPM encompasses seven steps that form an iterative AA system design

process. Moving from determining over-arching system goals to defining AA states

within a codified system design, FTTDPM is a non-linear process that emphasizes the

importance of task instantiation within a system design. Several, often unforeseen,

inherent tasks result from assigning the operation of a specific function to a specific

human or machine entity. The FTTDPM accounts for these inherent tasks through

a set of three diagrams that additively represent a robust AA system: the Function

Relationship Diagrams (FRD), Task Relationship Diagrams (TRD), and TRD with

automation added (Auto-TRD). Using these diagrams in conjunction with a set of

five new analysis metrics tied to the TRD framework (number of possible states,

number of different entity task handoffs, clusters of functionality, number of branches

128



and increase in inherent task load), system designers can design AA solutions that fit

well within a specific system.

Implementing an AA system in the Space Navigator automation environment,

which was created to learn how to move from an AA system design to a real-world

system, required the creation of a novel real-time individual player modeling system

to generate trajectories within the environment. To meet the designed AA goal of

performing a sub-task of the Space Navigator environment similarly to how the human

in the loop would have done it required creating a trajectory generator that would

imitate the trajectories a specific person would generate in response to a given state.

The solution to this problem was a player modeling technique involving three major

phases that can occur independently of each other or may overlap in a real-time

system: (1) create a generic player model, (2) update the individual player model,

and (3) generate a response using the player model. The process provided three key

contributions to the player modeling and game artificial intelligence communities: the

player model updates in real-time, it learns player tendency quickly, and it provides

practitioners valuable insights into how the player interacts with the environment.

The AA system design and Space Navigator automation from previous steps then

formed the backbone of a real-world AA system implementation that influenced the

development of the AASDLC, a six-phase start-to-finish development life-cycle. The

AASDLC addresses implementation concerns specific to AA systems by dividing the

system implementation into pre- and post-AA portions. By assuring that the design

and system align at every phase, more effective use of the FTTDPM principles can

help to produce real-world systems that align with user expectations. In conjunction

with the major contribution of the life-cycle itself, the AASDLC contributes three in

three ways to the adaptive automation and system design communities: (1) incorpo-

rating the AA-centered design principles of the FTTDPM, (2) creating a new user

129



feedback spectrum, and (3) developing a novel model for AA triggers.

5.1 Discussion

Each of the major contributions provided insights that warrant further discussion.

The FTTDPM research raises considerations on function decomposition and distin-

guishing between the environment and the automation acting within it. The player

modeling research raises questions about the differences between modeling novice and

experts within a system. The AASDLC user testing uncovered the potential impor-

tance of automation predictability and complementarity as major design considera-

tions. Additionally, choices made when designing the Space Navigator environment

affected experimental outcomes.

The Function-to-Task Design Process Model.

One of the problems that can arise with the FTTDPM comes from function decom-

position not being universal. Although the functions performed by a human-machine

system can be decomposed systematically in several ways, there is no way to ensure

with absolute certainty that the functionalities represented within the resulting FRD

are representative of the actual system. As such, design decisions can be made on

faulty representations of the system. For this reason, understanding the goals of both

the automation and the operator within the system is important. Additionally, dif-

ferent people may organize functionality relationships in different ways. The isolation

of functionality is important to the FTTDPM and as such, can cause problems with

systems that are representable along multiple hierarchical lines. These function de-

composition problems can cause a problem in determining when to end the function

decomposition step of the process model.

Another discussion point raised during the AASDLC is the disentanglement of the

130



automated element of the AA system and the environment in which the automated

element operates. In many human-machine system environments, the environment

will operate within the same platform as the machine element of the system. For ex-

ample, in Space Navigator the environment that generates spaceships, collects points,

and displays events operates in the same computer program as several elements of

the automated element. Within the context of a radar monitoring environment, an

automated aid could be a computer program that helps the user detect anomalies

that would be hard to disentangle from the radar monitoring environment. This can

become complicated specifically at the point of human-machine handoffs. Thus, it is

important to clearly define where the environment begins and the automation system

ends.

Clustering-Based Real-Time Player Modeling.

The player modeling tactic chosen was made to learn a specific users playing

habits very quickly, but this mode of learning has positive and negative effects. It

was beneficial to learn a player’s habits in the first five games to quickly move from a

generic player model to a specific player model that outperformed that generic model.

The problem, however, came from users also learning how to perform better in the

system over time. By training on only five games, the player models were learning

player tendencies that may not be carried forward as the user becomes an expert in

the environment. The player model had to not only pull out player-specific game-play

patterns, but also avoid modeling those behavior patterns that would not carry over

into future game-play.

In this sense, understanding the difference between novices, normal skilled, and

expert practitioners of a system would help in creating effective player models. A few

of the hallmarks of expert skill include consistency [190–192], automatization [80,190,

131



193–196], anomaly sensitivity [80, 192, 194], global decision-making [195, 196], and a

large time investment [191,192,194,195]. In a generic sense, an expert in a given field

is someone who performs consistently well, can do so intuitively, can notice slight

changes in the environment, can take the larger environment into account during the

decision process, and has devoted significant time and effort into the acquisition of

specific skill. By taking these items into account, a better understanding of what

character traits should be modeled at what point in time–and how these change over

time could prove useful in player modeling at an early stage.

An Adaptive Automation System Development Life-Cycle.

A lack of alignment between the design and system proved problematic in the

third set of user tests, specifically introducing unpredictability which proved more

troublesome than expected. By not ensuring that the system design represented

the system as implemented before doing our third user data collection experiment,

we ensured that the experiment would not reap the expected results. When the

first version of the AA trajectory drawing system used the time-based trigger, users

were confused and bristled at the system’s unpredictability. Initial results in the

experiment, therefore, pointed to a possible problem. At this point it would have been

beneficial to stop the user testing, analyze the data we had on hand, and redesign

the AA triggers for the system. Even though the designed system was more similar

to the users’ way of drawing trajectories than the other automations used, users

could not get past the fact that the automation was not understandable. Although

this finding follows with those of past research efforts [197], the extent to which

unpredictability dominated user attention and understanding of the automation was

beyond expectation.

A few users also mentioned a vague concept of play style complementarity in au-

132



tomation. The users said that they liked the style of automation that most comple-

mented their personal playing style. One user who cited a desire for complementary

automation, noted that the straight-line automation in the third user-test comple-

mented his style of getting the ships moving toward their destination quickly. While

another user said that having a similar playing system could potentially complement

his actions if he knew that the automation would be similar to what he would do.

Although there is no definitive proof, it seems that the ideas of complementary system

design in [198] could provide insight into designing effective automated elements.

Research Domain Considerations.

The Space Navigator domain was created as a domain complex enough to hinder

automation’s ability to perform “optimally” in the environment, while being intuitive

to users. The domain was made complex through a set of dynamically changing

state elements and a diverse set of event-triggering scoring mechanisms. By limiting

users’ responses to these changing states to one action, the domain became intuitive.

However, the intuitive nature of the environment may have enabled some unforeseen

consequences.

The state-space is dynamic. No-fly zones move randomly around the screen at set

intervals, so users cannot predict where a NFZ will show up next. Bonuses appear

randomly, and remain in place until they are picked up. Most importantly, new space-

ships are spawned in random locations. These dynamic aspects of the environment

make it difficult for the automation to create a “best possible” route at any given

point in time. Based on the known information, the best possible route for a given

ship may change drastically when NFZs move or a new ship appears.

There are multiple types of scoring mechanisms. Although all scoring events

provide either a positive or negative score increment, each scoring event type impacts

133



the environment differently. As currently designed, when a spaceship lands at its

intended target, it scores a one-time 100 point increment, and the ship disappears

from the state-space–it “lands.” Bonuses give a 50 point bonus, but do not affect

the makeup of the environment in any way–the ship just continues on its course.

Collisions remove 100 points per ship involved in a crash, and remove at least two

ships from the environment–which can have a positive “decluttering” effect. No-fly

zones affect the environment similarly to bonuses–ships just continue their paths–but

the scoring mechanism is a repeated 10 point penalty until the ship leaves the NFZ.

Because of its simple interaction mechanism–the lone user input method is to draw

trajectories–Space Navigator is intuitive to users. Users may only take one type of

action, but process a diverse set of inputs to make their input decisions. Because the

input is so simple and intuitive, users have a hard time explaining why they made

specific decisions. User surveys provided insight into low-level tactics (e.g. sending

ships off the screen, creating ingress lanes, etc.), but expert users had great difficulty

in differentiating strategies that set their game-play in higher scoring instances in

comparison to lower scoring instances.

The task representations shown in the TRD helped to show that users, although

they were only performing “one action,” were actually making a set of complex de-

cisions all manifested in a trajectory draw. Additionally, the simplistic nature of

the user response proved difficult to represent fully in the TRD. Since users do not

necessarily think sequentially when making decisions in the trajectory draw process,

the TRD representation does have limits to its representation abilities. This becomes

especially important when choosing how to represent an environment state represen-

tation scheme.

134



5.2 Future Work

This research leaves many doors open for future efforts and collaborations. These

possible directions include but are not limited to:

• Further using player modeling to compare game-play tendencies of players be-

fore and after automation changes are added - This could include using the

existing player modeling techniques or even modifying the techniques, such as

self-organizing maps instead of agglomerative clustering, to model player ten-

dencies across a broad spectrum of aspects of the user response (e.g. trajectory

draw time, draw start times, etc.) in addition to the trajectories themselves.

These player models could then be used to compare game-play tendencies be-

fore and after automations are added to a system. Comparing the models could

provide insight into the different ways that disparate types of automation affect

users within the environment.

• Comparison of different automation types for training users - A new user test

could be designed where each user is only exposed to one type of automation

over an extended period of time to determine which automations are helpful in

training users to perform well in a given environment (e.g. Space Navigator).

A pre- and post experiment baseline would be taken to determine the user’s

game-play capabilities before and after training. Then the user would train

on a specific automation type or none at all for a set number of repetitions.

Observations of user performance increases for the different automations could

prove useful to AA system design researchers.

• Improving the specific player game-play similarity automated element - An ob-

vious next step for the trajectory generation portion of the research would be to

improve the ability of the trajectory generator to produce similar trajectories.

135



Improvements could be sought in state representation, ability to learn a player

model quickly, or even creating a better generic baseline to build from. Better

result measuring of action similarity could also improve the ability of the sys-

tem to measure how well the system imitates even more aspects of the user’s

tendencies.

• Re-running the user-test with improved automation to tease out effects of similar

game-play - Additionally, once the final improvements of the Space Navigator

environment are implemented, another user test could be run trying to tease

out the similarity aspect of the automation. Controlling for problems that were

present in the initial design will help to remove some of the distractions users

experienced. It could also be useful to ensure that the comparative systems were

all equally adept in the environment on their own and also similarly predictable

in nature. A good comparison may come from having the system imitate the

user in question, and then imitate another very different user.

• Analysis of subjective workload measures in comparison to real-world measures

of competence in the environment - We have collected subjective data from

users over two experiments with the ISA and NASA TLX workload batteries.

We could look into the data to determine what the data says about views of

workload, and whether they line up with objective measures of performance

such as score.

• Control theory for AA trigger design - Further theoretical work could be done

on the design of adaptive automation triggers. There is evidence within the

AASDLC that seems to point toward a lack of understanding of what adapt-

ability truly entails within the AA community. It is likely that all AA system

triggers could be represented by a set of discrete and continuous switches. Ap-

136



plying control theory research to AA trigger design could open up synergies

within the two research fields.

137



Bibliography

1. J. M. Bindewald, M. E. Miller, and G. L. Peterson, “A function-to-task process
model for adaptive automation system design,” International Journal of Human-
Computer Studies, vol. 72, no. 12, pp. 822–834, 2014.

2. H. E. Price, “The allocation of functions in systems,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 27, no. 1, pp. 33–
45, 1985.

3. K. M. Feigh, M. C. Dorneich, and C. C. Hayes, “Toward a characterization of
adaptive systems a framework for researchers and system designers,” Human
Factors, vol. 54, no. 6, pp. 1008–1024, 2012.

4. R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and
levels of human interaction with automation,” Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, vol. 30, no. 3, pp. 286–
297, 2000.

5. T. B. Sheridan and R. Parasuraman, “Human-automation interaction,” Reviews
of human factors and ergonomics, vol. 1, no. 1, pp. 89–129, 2005.

6. Merriam-Webster, “Adapt,” 2013. [Online]. Available: http://www.
merriam-webster.com/dictionary/adapt

7. W. B. Rouse, “Human-computer interaction in multitask situations,” Systems,
Man and Cybernetics, IEEE Transactions on, vol. 7, no. 5, pp. 384–392, 1977.

8. ——, “Human-computer interaction in the control of dynamic systems,” ACM
Computing Surveys (CSUR), vol. 13, no. 1, pp. 71–99, 1981.

9. M. C. Dorneich, P. M. Ververs, S. Mathan, S. Whitlow, and C. C. Hayes, “Con-
sidering etiquette in the design of an adaptive system,” Journal of Cognitive
Engineering and Decision Making, vol. 6, no. 2, pp. 243–265, 2012.

10. R. Parasuraman, “Supporting battle management command and control: De-
signing innovative interfaces and selecting skilled operators,” DTIC Document,
Tech. Rep., 2008.

11. A. Fereidunian, M. Lehtonen, H. Lesani, C. Lucas, and M. Nordman, “Adaptive
autonomy: smart cooperative cybernetic systems for more humane automation
solutions,” in Systems, Man and Cybernetics, 2007. ISIC. IEEE International
Conference on. IEEE, 2007, pp. 202–207.

12. G. R. J. Hockey, D. G. Wastell, and J. Sauer, “Effects of sleep deprivation and
user interface on complex performance: a multilevel analysis of compensatory
control,” Human Factors: The Journal of the Human Factors and Ergonomics
Society, vol. 40, no. 2, pp. 233–253, 1998.

138



13. J. Sauer, D. Wastell, and G. Hockey, “A conceptual framework for designing
micro-worlds for complex work domains: a case study of the cabin air man-
agement system,” Computers in Human Behavior, vol. 16, no. 1, pp. 45–58,
2000.

14. B. Lorenz, F. Di Nocera, S. Röttger, and R. Parasuraman, “Automated fault-
management in a simulated spaceflight micro-world,” Aviation, Space, and En-
vironmental Medicine, vol. 73, no. 9, pp. 886–897, 2002.

15. J. Sauer, C.-S. Kao, D. Wastell, and P. Nickel, “Explicit control of adaptive
automation under different levels of environmental stress,” Ergonomics, vol. 54,
no. 8, pp. 755–766, 2011.

16. M. Mahfouf, J. Zhang, D. A. Linkens, A. Nassef, P. Nickel, G. R. J. Hockey, and
A. C. Roberts, “Adaptive fuzzy approaches to modelling operator functional
states in a human-machine process control system,” 2007.

17. C.-H. Ting, M. Mahfouf, D. A. Linkens, A. Nassef, P. Nickel, A. C. Roberts,
M. H. Roberts, and G. R. J. Hockey, “Real-time adaptive automation for perfor-
mance enhancement of operators in a human-machine system,” in Proceedings of
the 16th Mediterranean Conference on Control and Automation. IEEE, 2008,
pp. 552–557.

18. C.-H. Ting, M. Mahfouf, D. A. Linkens, A. Nassef, P. Nickel, G. R. J. Hockey,
and A. C. Roberts, “Towards on-line supervision and control of operational
functional state (ofs) for subjects under mental stress,” in Proceedings of the 2007
IEEE/NIH Life Science Sysytems and Applications Workshop (LISSA 2007).
IEEE, 2008, pp. 77–80.

19. C.-H. Ting, M. Mahfouf, A. Nassef, D. A. Linkens, G. Panoutsos, P. Nickel,
A. C. Roberts, and G. Hockey, “Real-time adaptive automation system based
on identification of operator functional state in simulated process control oper-
ations,” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 40, no. 2, pp. 251–262, 2010.

20. J. Sauer, C.-S. Kao, and D. Wastell, “A comparison of adaptive and adaptable
automation under different levels of environmental stress,” Ergonomics, vol. 55,
no. 8, pp. 840–853, 2012.

21. R. Johnson, M. Leen, and D. Goldberg, “Testing adaptive levels of automation
(aloa) for uav supervisory control,” DTIC Document, Tech. Rep., 2007.

22. G. L. Calhoun, H. A. Ruff, M. H. Draper, and E. J. Wright, “Automation-
level transference effects in simulated multiple unmanned aerial vehicle control,”
Journal of Cognitive Engineering and Decision Making, vol. 5, no. 1, pp. 55–82,
2011.

139



23. G. L. Calhoun, V. B. Ward, and H. A. Ruff, “Performance-based adaptive au-
tomation for supervisory control,” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 55, no. 1. SAGE Publications, 2011,
pp. 2059–2063.

24. G. L. Calhoun, H. A. Ruff, S. Spriggs, and C. Murray, “Tailored performance-
based adaptive levels of automation,” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 56, no. 1. SAGE Publications, 2012,
pp. 413–417.

25. B. Kidwell, G. L. Calhoun, H. A. Ruff, and R. Parasuraman, “Adaptable and
adaptive automation for supervisory control of multiple autonomous vehicles,”
in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
vol. 56. SAGE Publications, 2012, pp. 428–432.

26. P. M. Ververs, S. Whitlow, M. Dorneich, and S. Mathan, “Building honeywells
adaptive system for the augmented cognition program,” in 1st International
Conference on Augmented Cognition, Las Vegas, NV, 2005.

27. M. C. Dorneich, P. M. Ververs, S. D. Whitlow, S. Mathan, J. Carciofini, and
T. Reusser, “Neuro-physiologically-driven adaptive automation to improve deci-
sion making under stress,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 50, no. 3. Sage Publications, 2006, pp. 410–414.

28. J. Comstock and R. Arnegard, “Multi-attribute task battery (nasa tech. mem-
orandum 104174),” Hampton, VA: NASA Langley Research Center, 1992.

29. R. Parasuraman, M. Mouloua, and R. Molloy, “Effects of adaptive task alloca-
tion on monitoring of automated systems,” Human Factors, vol. 38, no. 4, pp.
665–679, 1996.

30. R. Parasuraman, M. Mouloua, and B. Hilburn, “Adaptive aiding and adap-
tive task allocation enhance human-machine interaction,” Automation technol-
ogy and human performance: Current research and trends, pp. 119–123, 1999.

31. F. G. Freeman, P. J. Mikulka, L. J. Prinzel, and M. W. Scerbo, “Evaluation of
an adaptive automation system using three eeg indices with a visual tracking
task,” Biological Psychology, vol. 50, no. 1, pp. 61–76, 1999.

32. N. R. Bailey, M. W. Scerbo, F. G. Freeman, P. J. Mikulka, and L. A. Scott,
“Comparison of a brain-based adaptive system and a manual adaptable system
for invoking automation,” Human Factors: The Journal of the Human Factors
and Ergonomics Society, vol. 48, no. 4, pp. 693–709, 2006.

33. M. C. Dorneich, B. Passinger, C. Hamblin, C. Keinrath, J. Vašek, S. D. Whitlow,
and M. Beekhuyzen, “The crew workload manager an open-loop adaptive system
design for next generation flight decks,” in Proceedings of the Human Factors

140



and Ergonomics Society Annual Meeting, vol. 55, no. 1. SAGE Publications,
2011, pp. 16–20.

34. D. Barber, L. Davis, D. Nicholson, N. Finkelstein, and J. Y. Chen, “The mixed
initiative experimental (mix) testbed for human robot interactions with varied
levels of automation,” DTIC Document, Tech. Rep., 2008.

35. C. M. Fidopiastis, J. Drexler, D. Barber, K. Cosenzo, M. Barnes, J. Y. Chen,
and D. Nicholson, “Impact of automation and task load on unmanned system
operators eye movement patterns,” in Foundations of Augmented Cognition.
Neuroergonomics and Operational Neuroscience. Springer, 2009, pp. 229–238.

36. K. Cosenzo, J. Chen, L. Reinerman-Jones, M. Barnes, and D. Nicholson, “Adap-
tive automation effects on operator performance during a reconnaissance mission
with an unmanned ground vehicle,” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 54, no. 25. SAGE Publications, 2010,
pp. 2135–2139.

37. D. B. Kaber and M. R. Endsley, “Out-of-the-loop performance problems and the
use of intermediate levels of automation for improved control system functioning
and safety,” Process Safety Progress, vol. 16, no. 3, pp. 126–131, 1997.

38. D. B. Kaber and J. M. Riley, “Adaptive automation of a dynamic control task
based on secondary task workload measurement,” International journal of cog-
nitive ergonomics, vol. 3, no. 3, pp. 169–187, 1999.

39. M. P. Clamann, M. C. Wright, and D. B. Kaber, “Comparison of performance ef-
fects of adaptive automation applied to various stages of human-machine system
information processing,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 46, no. 3. SAGE Publications, 2002, pp. 342–346.

40. M. P. Clamann and D. B. Kaber, “Authority in adaptive automation applied to
various stages of human-machine system information processing,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 47, no. 3.
SAGE Publications, 2003, pp. 543–547.

41. D. B. Kaber, J. M. Riley, K.-W. Tan, and M. R. Endsley, “On the design of
adaptive automation for complex systems,” International Journal of Cognitive
Ergonomics, vol. 5, no. 1, pp. 37–57, 2001.

42. D. B. Kaber and M. R. Endsley, “The effects of level of automation and adap-
tive automation on human performance, situation awareness and workload in a
dynamic control task,” Theoretical Issues in Ergonomics Science, vol. 5, no. 2,
pp. 113–153, 2004.

43. D. B. Kaber, M. C. Wright, L. J. Prinzel, and M. P. Clamann, “Adaptive au-
tomation of human-machine system information-processing functions,” Human

141



Factors: The Journal of the Human Factors and Ergonomics Society, vol. 47,
no. 4, pp. 730–741, 2005.

44. C. F. Rusnock and C. D. Geiger, “The impact of adaptive automation invoking
thresholds on cognitive workload and situational awareness,” in Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 57, no. 1.
SAGE Publications, 2013, pp. 119–123.

45. ——, “Using discrete-event simulation for cognitive workload modeling and sys-
tem evaluation,” in Proceedings of the 2013 Industrial and Systems Engineering
Research Conference, A. Krishnamurthy and W. Chan, Eds., 2013.

46. M. Omodei, G. Elliott, and M. Walshe, “Development of computer simulated
wildfire scenarios for the experimental investigation of unsafe decision making,”
Brushfire Cooperative Research Center, Tech. Rep. 2:2004, June 2006.

47. R. S. Gutzwiller and B. A. Clegg, “Training for unmanned vehicle allocation with
automation in a dynamic microworld,” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 56, no. 1. SAGE Publications, 2012,
pp. 2497–2501.

48. R. S. Gutzwiller, B. A. Clegg, C. Smith, J. E. Lewis, and J. D. Patterson,
“Predicted failure alerting in a supervisory control task does not always enhance
performance,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 57, no. 1. SAGE Publications, 2013, pp. 364–368.

49. C. A. Cook, C. Corbridge, C. A. Morgan, and A. J. Tattersall, “Developing
dynamic function allocation for future naval systems,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 41, no. 2. SAGE
Publications, 1997, pp. 1047–1051.

50. C. Cook, C. Corbridge, C. Morgan, and E. Turpin, “Investigating methods of
dynamic function allocation for naval command and control,” in Human Inter-
faces in Control Rooms, Cockpits and Command Centres, 1999. International
Conference on. IET, 1999, pp. 388–393.

51. C. Morgan, C. Cook, and C. Corbridge, “Dynamic function allocation for naval
command and control,” Automation technology and human performance: Cur-
rent research and trends, pp. 134–138, 1999.

52. Y. Boussemart and M. Cummings, “Behavioral recognition and prediction of
an operator supervising multiple heterogeneous unmanned vehicles,” Humans
operating unmanned systems, 2008.

53. M. Cummings and C. Nehme, “Modeling the impact of workload in network
centric supervisory control settings,” in 2nd Annual Sustaining Performance
Under Stress Symposium,(College Park, MD), 2009.

142



54. M. Cummings, S. Bruni, S. Mercier, and P. Mitchell, “Automation architecture
for single operator, multiple uav command and control,” DTIC Document, Tech.
Rep., 2007.

55. D. Gartenberg, L. A. Breslow, J. Park, J. M. McCurry, and J. G. Trafton,
“Adaptive automation and cue invocation: the effect of cue timing on operator
error,” in Proceedings of the 2013 ACM annual conference on Human factors in
computing systems. ACM, 2013, pp. 3121–3130.

56. D. Gartenberg, L. Breslow, J. M. McCurry, and J. G. Trafton, “Situation aware-
ness recovery,” Human Factors: The Journal of the Human Factors and Er-
gonomics Society, pp. 1–18, 2013.

57. K. A. Cosenzo, R. Parasuraman, A. Novak, and M. Barnes, “Implementation of
automation for control of robotic systems,” DTIC Document, Tech. Rep., 2006.

58. R. Parasuraman, M. Barnes, K. Cosenzo, and S. Mulgund, “Adaptive automa-
tion for human-robot teaming in future command and control systems,” DTIC
Document, Tech. Rep., 2007.

59. K. Cosenzo, R. Parasuraman, K. Pillalamarri, and T. Feng, “The effect of ap-
propriately and inappropriately applied automation for the control of unmanned
systems on operator performance,” DTIC Document, Tech. Rep., 2009.

60. K. Cosenzo, R. Parasuraman, and K. Pillalamarri, “The effect of task based
automation for the control of unmanned systems on operator performance,”
in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
vol. 52, no. 4. SAGE Publications, 2008, pp. 247–251.

61. R. Parasuraman, K. A. Cosenzo, and E. De Visser, “Adaptive automation for
human supervision of multiple uninhabited vehicles: Effects on change detection,
situation awareness, and mental workload,” Military Psychology, vol. 21, no. 2,
pp. 270–297, 2009.

62. T. Inagaki, “Situation-adaptive autonomy: Trading control of authority in
human-machine systems,” Automation technology and human performance:
Current research and trends, pp. 154–159, 1999.

63. N. Moray, T. Inagaki, and M. Itoh, “Adaptive automation, trust, and self-
confidence in fault management of time-critical tasks.” Journal of Experimental
Psychology: Applied, vol. 6, no. 1, p. 44, 2000.

64. M. Gacy and D. Dahn, “Commonality of control paradigms for unmanned sys-
tems,” in Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-
robot interaction. ACM, 2006, pp. 339–340.

143



65. E. de Visser and R. Parasuraman, “Adaptive aiding of human-robot teaming
effects of imperfect automation on performance, trust, and workload,” Journal
of Cognitive Engineering and Decision Making, vol. 5, no. 2, pp. 209–231, 2011.

66. G. F. Wilson and C. A. Russell, “Psychophysiologically determined adaptive
aiding in a simulated ucav task,” Human performance, situation awareness, and
automation: Current research and trends, pp. 200–204, 2004.

67. ——, “Performance enhancement in an uninhabited air vehicle task using psy-
chophysiologically determined adaptive aiding,” Human Factors: The Journal
of the Human Factors and Ergonomics Society, vol. 49, no. 6, pp. 1005–1018,
2007.

68. A. Valente, E. Carpanzano, A. Nassehi, and S. T. Newman, “A step compliant
knowledge based schema to support shop-floor adaptive automation in dynamic
manufacturing environments,” CIRP Annals-Manufacturing Technology, vol. 59,
no. 1, pp. 441–444, 2010.

69. A. Valente and E. Carpanzano, “Development of multi-level adaptive control and
scheduling solutions for shop-floor automation in reconfigurable manufacturing
systems,” CIRP Annals-Manufacturing Technology, vol. 60, no. 1, pp. 449–452,
2011.

70. D. B. Kaber, E. Onal, and M. R. Endsley, “Design of automation for telerobots
and the effect on performance, operator situation awareness, and subjective
workload,” Human Factors and Ergonomics in Manufacturing, vol. 10, no. 4,
pp. 409–430, 2000.

71. D. B. Kaber, M. C. Wright, and M. A. Sheik-Nainar, “Investigation of multi-
modal interface features for adaptive automation of a human–robot system,”
International journal of human-computer studies, vol. 64, no. 6, pp. 527–540,
2006.

72. R. Murphy and J. Shields, “The role of autonomy in dod systems,” Technical
report, Department of Defense, Defense Science Board Task Force Report, Tech.
Rep., 2012.

73. J. A. Winnefeld, Jr. and F. Kendall, “Unmanned systems integrated roadmap
fy2013-2038,” Department of Defense, Tech. Rep. 14–S–0553, 2013.

74. J. Eggers and M. H. Draper, “Multi-uav control for tactical reconnaissance and
close air support missions: Operator perspectives and design challenges,” in
Proc. NATO RTO Human Factors and Medicine Symp. HFM-135. NATO TRO,
Neuilly-sur-Siene, CEDEX, Biarritz, France, 2006.

75. Office of the US Air Force Chief Scientist, “Technology horizons: A vision for air
force science and technology 2010-30,” Office of the US Air Force Chief Scientist,
Tech. Rep. AF/ST-TR-10-01-PR, September 2011.

144



76. M. R. Endsley, “Level of automation effects on performance, situation awareness
and workload in a dynamic control task,” Ergonomics, vol. 42, no. 3, pp. 462–
492, 1999.

77. R. Parasuraman, “Designing automation for human use: empirical studies and
quantitative models,” Ergonomics, vol. 43, no. 7, pp. 931–951, 2000.

78. E. de Visser, M. S. Cohen, M. LeGoullon, O. Sert, A. Freedy, E. Freedy, G. Welt-
man, and R. Parasuraman, “A design methodology for controlling, monitoring,
and allocating unmanned vehicles,” in 3rd International Conference on Human
Centered Processes. Delft: Proceeding of Supervisory Control in Critical Systems
Management Workshop, 2008.

79. A. Haarmann, W. Boucsein, and F. Schaefer, “Combining electrodermal re-
sponses and cardiovascular measures for probing adaptive automation during
simulated flight,” Applied Ergonomics, vol. 40, no. 6, pp. 1026–1040, 2009.

80. M. W. Wiggins, “The role of cue utilisation and adaptive interface design in the
management of skilled performance in operations control,” Theoretical Issues in
Ergonomics Science, no. ahead-of-print, pp. 1–10, 2012.

81. J. M. Bindewald, G. L. Peterson, M. E. Miller, and B. T. Langhals, “An adaptive
automation system design life cycle,” IEEE Transactions on Human Machine
Systems, SUBMITTED.

82. W. W. Royce, “Managing the development of large software systems,” in pro-
ceedings of IEEE WESCON, vol. 26, no. 8. Los Angeles, 1970.

83. B. W. Boehm, “A spiral model of software development and enhancement,”
Computer, vol. 21, no. 5, pp. 61–72, 1988.

84. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The kdd process for extracting
useful knowledge from volumes of data,” Communications of the ACM, vol. 39,
no. 11, pp. 27–34, 1996.

85. R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model for data
mining,” in Proceedings of the 4th International Conference on the Practical
Applications of Knowledge Discovery and Data Mining. Citeseer, 2000, pp.
29–39.

86. G. Di Orio, J. Barata, C. Sousa, and L. Flores, “Control system software de-
sign methodology for automotive industry,” in Systems, Man, and Cybernetics
(SMC), 2013 IEEE International Conference on. IEEE, 2013, pp. 3848–3853.

87. J. M. Bindewald, G. L. Peterson, and M. E. Miller, “Clustering-based real-time
player modeling,” IEEE Transactions on Computational Intelligence and AI in
Games, SUBMITTED.

145



88. M. Itoh, G. Abe, and K. Tanaka, “Trust in and use of automation: their depen-
dence on occurrence patterns of malfunctions,” in IEEE International Confer-
ence on Systems, Man, and Cybernetics, vol. 3. IEEE, 1999, pp. 715–720.

89. T. Prevot, J. Homola, and J. Mercer, “Human-in-the-loop evaluation of ground-
based automated separation assurance for nextgen,” in Congress of International
Council of the Aeronautical Sciences Anchorage, Anchorage, AK, 2008.

90. R. Parasuraman and C. D. Wickens, “Humans: Still vital after all these years
of automation,” Human Factors: The Journal of the Human Factors and Er-
gonomics Society, vol. 50, no. 3, pp. 511–520, 2008.

91. H. Nakazawa, “Alternative human role in manufacturing,” AI & society, vol. 7,
no. 2, pp. 151–156, 1993.

92. D. D. Woods and R. I. Cook, “Incidents–markers of resilience or brittleness,”
Resilience Engineering. Concepts and Precepts. Ashgate, Aldershot, UK, 2006.

93. M. Itoh, “A model of trust in automation: Why humans over-trust,” in SICE
Annual Conference (SICE), 2011 Proceedings of. IEEE, 2011, pp. 198–201.

94. M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P. Beck,
“The role of trust in automation reliance,” International Journal of Human-
Computer Studies, vol. 58, no. 6, pp. 697–718, 2003.

95. J. D. Lee and K. A. See, “Trust in automation: Designing for appropriate re-
liance,” Human Factors: The Journal of the Human Factors and Ergonomics
Society, vol. 46, no. 1, pp. 50–80, 2004.

96. S. M. Merritt, H. Heimbaugh, J. LaChapell, and D. Lee, “I trust it, but i
don?t know why effects of implicit attitudes toward automation on trust in an
automated system,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, 2012.

97. B. Kirwan, “Developing human informed automation in air traffic management,”
Contemporary Issues In Human Factors And Aviation Safety, p. 247, 2005.

98. A. Bye, E. Hollnagel, and T. S. Brendeford, “Human–machine function alloca-
tion: a functional modelling approach,” Reliability Engineering & System Safety,
vol. 64, no. 2, pp. 291–300, 1999.

99. W. MacDonald, “The impact of job demands and workload on stress and fa-
tigue,” Australian Psychologist, vol. 38, no. 2, pp. 102–117, 2003.

100. G. B. Reid and T. Nygren, “The subjective workload assessment technique: A
scaling procedure for measuring mental workload,” Human mental workload, vol.
185, p. 218, 1988.

146



101. P. Fitts, A. Chapanis, F. Frick, W. Garner, J. Gebhard, W. Grether, R. Henne-
man, W. Kappauf, E. Newman, and A. Williams, Jr., “Human engineering for an
effective air-navigation and traffic-control system,” National Research Council
Committe on Aviation Psychology, Washington, D.C., Tech. Rep., 1951.

102. J. A. B. Calleja and J. Troost, “A fuzzy expert system for task distribution in
teams under unbalanced workload conditions,” in International Conference on
Intelligent Agents, Web Technologies and Internet Commerce, vol. 1. IEEE,
2005, pp. 549–556.

103. T. B. Sheridan and W. L. Verplank, “Human and computer control of undersea
teleoperators,” DTIC Document, Tech. Rep., 1978.

104. E. E. Geiselman, C. M. Johnson, and D. R. Buck, “Flight deck automation in-
valuable collaborator or insidious enabler?” Ergonomics in Design: The Quar-
terly of Human Factors Applications, vol. 21, no. 3, pp. 22–26, 2013.

105. E. A. Byrne and R. Parasuraman, “Psychophysiology and adaptive automation,”
Biological Psychology, vol. 42, no. 3, pp. 249–268, 1996.

106. C. D. Wickens, “Multiple resources and mental workload,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 50, no. 3, pp. 449–
455, 2008.

107. D. Manzey, J. Reichenbach, and L. Onnasch, “Human performance consequences
of automated decision aids the impact of degree of automation and system ex-
perience,” Journal of Cognitive Engineering and Decision Making, vol. 6, no. 1,
pp. 57–87, 2012.

108. R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “Situation awareness,
mental workload, and trust in automation: Viable, empirically supported cog-
nitive engineering constructs,” Journal of Cognitive Engineering and Decision
Making, vol. 2, no. 2, pp. 140–160, 2008.

109. D. A. Norman and S. W. Draper, User Centered System Design; New Per-
spectives on Human-Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum
Associates Inc., 1986.

110. J. Gulliksen, B. Göransson, I. Boivie, S. Blomkvist, J. Persson, and Å. Cajander,
“Key principles for user-centred systems design,” Behaviour and Information
Technology, vol. 22, no. 6, pp. 397–409, 2003.

111. D. Ross, “Structured analysis (sa): A language for communicating ideas,” Soft-
ware Engineering, IEEE Transactions on, vol. SE-3, no. 1, pp. 16–34, Jan 1977.

112. L. Delligatti, SysML Distilled: A Brief Guide To The Systems Modeling Lan-
guage. Addison-Wesley, 2013.

147



113. C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Pearson Education, Inc, 2004.

114. J. Annett and K. D. Duncan, “Task analysis and training design.” 1967.

115. J. Annett, “Hierarchical task analysis,” Handbook of cognitive task design, pp.
17–35, 2003.

116. B. S. Blanchard and W. J. Fabrycky, Systems engineering and analysis, 2006.

117. M. Van Welie and G. C. Van Der Veer, “Groupware task analysis,” Handbook
of cognitive task design, pp. 447–476, 2003.

118. P. Johnson, H. Johnson, R. Waddington, and A. Shouls, “Task-related knowl-
edge structures: analysis, modelling and application,” in BCS HCI. Citeseer,
1988, pp. 35–62.

119. F. Paterno, “Towards a uml for interactive systems,” in Engineering for human-
computer interaction. Springer, 2001, pp. 7–18.

120. S. Lu, C. Paris, K. V. Linden, and N. Colineau, “Generating uml diagrams from
task models,” in Proceedings of the 4th Annual Conference of the ACM Special
Interest Group on Computer-Human Interaction. ACM, 2003, pp. 9–14.

121. S. K. Card, T. P. Moran, and A. Newell, The psychology of human-computer
interaction. CRC Press, 1986.

122. J.-C. Tarby and M.-F. Barthet, “The diane+ method.” in CADUI, vol. 96, 1996,
pp. 95–119.

123. J. Vanderdonckt, J.-C. Tarby, and A. Derycke, “Using data flow diagrams for
supporting task models.” in DSV-IS (2), 1998, pp. 1–16.

124. F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A diagrammatic
notation for specifying task models,” in Human-Computer Interaction INTER-
ACT97. Springer, 1997, pp. 362–369.

125. M. Giese, T. Mistrzyk, A. Pfau, G. Szwillus, and M. von Detten, “Amboss: A
task modeling approach for safety-critical systems,” in Engineering Interactive
Systems. Springer, 2008, pp. 98–109.

126. E. Hollnagel, Fram: the functional resonance analysis method: modelling com-
plex socio-technical systems. Ashgate Publishing, Ltd., 2012.

127. W. van der Aalst and A. ter Hofstede, “Yawl: yet another workflow language,”
Information Systems, vol. 30, no. 4, pp. 245 – 275, 2005.

148



128. D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guzar, N. Kartha, C. K. Liu, R. Khalaf,
D. Knig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and
A. Yiu, Eds., Web Services Business Process Execution Language Version 2.0,
2nd ed., April 2007.

129. C. Martinie, P. Palanque, E. Barboni, and M. Ragosta, “Task-model based
assessment of automation levels: application to space ground segments,” in Sys-
tems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on.
IEEE, 2011, pp. 3267–3273.

130. C. Martinie, P. Palanque, M. Ragosta, and R. Fahssi, “Extending procedu-
ral task models by systematic explicit integration of objects, knowledge and
information,” in Proceedings of the 31st European Conference on Cognitive Er-
gonomics. ACM, 2013, p. 23.

131. D. M. Buede, The engineering design of systems: models and methods. John
Wiley & Sons, 2011, vol. 55.

132. A. Cheng-Leong, K. Li Pheng, and G. R. Keng Leng, “Idef*: a comprehen-
sive modelling methodology for the development of manufacturing enterprise
systems,” International Journal of Production Research, vol. 37, no. 17, pp.
3839–3858, 1999.

133. J. Schrum, I. V. Karpov, and R. Miikkulainen, “Human-like combat behaviour
via multiobjective neuroevolution,” in Believable bots. Springer, 2012, pp. 119–
150.

134. D. Gamez, Z. Fountas, and A. K. Fidjeland, “A neurally controlled computer
game avatar with humanlike behavior,” Computational Intelligence and AI in
Games, IEEE Transactions on, vol. 5, no. 1, pp. 1–14, 2013.

135. M. Kemmerling, N. Ackermann, and M. Preuss, “Making diplomacy bots indi-
vidual,” in Believable Bots. Springer, 2012, pp. 265–288.

136. H. Yu and M. O. Riedl, “Personalized interactive narratives via sequential rec-
ommendation of plot points,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 6, no. 2, pp. 174–187, 2014.

137. R. Lopes and R. Bidarra, “Adaptivity challenges in games and simulations: a
survey,” Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 3, no. 2, pp. 85–99, 2011.

138. J. M. Bindewald, G. L. Peterson, and M. E. Miller, “Trajectory generation with
player modeling,” in Advances in Artificial Intelligence. Springer, 2015, pp.
42–49.

149



139. G. N. Yannakakis, P. Spronck, D. Loiacono, and E. André, “Player modeling,”
Artificial and Computational Intelligence in Games, vol. 6, pp. 45–59, 2013.

140. D. Charles and M. Black, “Dynamic player modeling: A framework for player-
centered digital games,” in Proc. of the International Conference on Computer
Games: Artificial Intelligence, Design and Education, 2004, pp. 29–35.

141. C. Bateman, R. Lowenhaupt, and L. E. Nacke, “Player typology in theory and
practice,” in Proceedings of DiGRA, 2011.

142. B. Weber and M. Mateas, “A data mining approach to strategy prediction,” in
IEEE CIG 2009, Sept 2009, pp. 140–147.

143. J. Gow, S. Colton, P. A. Cairns, and P. Miller, “Mining rules from player expe-
rience and activity data.” in AIIDE, 2012.

144. A. Drachen, A. Canossa, and G. Yannakakis, “Player modeling using self-
organization in tomb raider: Underworld,” in IEEE CIG 2009, Sept 2009, pp.
1–8.

145. J. Gow, R. Baumgarten, P. Cairns, S. Colton, and P. Miller, “Unsupervised
modeling of player style with lda,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 4, no. 3, pp. 152–166, Sept 2012.

146. C.-X. Zhang, Z.-K. Zhang, L. Yu, C. Liu, H. Liu, and X.-Y. Yan, “Informa-
tion filtering via collaborative user clustering modeling,” Physica A: Statistical
Mechanics and its Applications, vol. 396, no. 0, pp. 195 – 203, 2014.

147. A. M. Smith, C. Lewis, K. Hullet, and A. Sullivan, “An inclusive view of player
modeling,” in Proceedings of the 6th International Conference on Foundations
of Digital Games. ACM, 2011, pp. 301–303.

148. J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through player
modeling and track evolution,” Optimizing Player Satisfaction in Computer and
Physical Games, p. 61, 2006.

149. S. C. Bakkes, P. H. Spronck, and G. van Lankveld, “Player behavioural mod-
elling for video games,” Entertainment Computing, vol. 3, no. 3, pp. 71–79,
2012.

150. J. Rubin and I. Watson, “Computer poker: A review,” Artificial Intelligence,
vol. 175, no. 56, pp. 958 – 987, 2011, special Review Issue. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370211000191

151. K. Laviers, G. Sukthankar, D. W. Aha, M. Molineaux, C. Darken et al., “Im-
proving offensive performance through opponent modeling.” in AIIDE, 2009.

150



152. S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning and
execution for real-time strategy games,” in Case-Based Reasoning Research and
Development. Springer, 2007, pp. 164–178.

153. S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss,
“A survey of real-time strategy game AI research and competition in starcraft,”
Computational Intelligence and AI in Games, IEEE Transactions on, vol. 5,
no. 4, pp. 293–311, 2013.

154. G. N. Yannakakis and J. Hallam, “Real-time game adaptation for optimizing
player satisfaction,” Computational Intelligence and AI in Games, IEEE Trans-
actions on, vol. 1, no. 2, pp. 121–133, 2009.

155. G. N. Yannakakis and J. Togelius, “Experience-driven procedural content gener-
ation,” Affective Computing, IEEE Transactions on, vol. 2, no. 3, pp. 147–161,
2011.

156. S. Begum, M. U. Ahmed, P. Funk, N. Xiong, and M. Folke, “Case-based reason-
ing systems in the health sciences: A survey of recent trends and developments,”
Transactions on Systems, Man, and Cybernetics–Part C: Applications and Re-
views, vol. 41, no. 4, pp. 421–434, July 2011.

157. B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5,
pp. 469–483, 2009.

158. T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans-
actions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

159. C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,” Arti-
ficial Intelligence Review, 1999.

160. B. Argall, B. Browning, and M. Veloso, “Learning by demonstration with cri-
tique from a human teacher,” in Proceedings of the ACM/IEEE international
conference on Human-robot interaction. ACM, 2007, pp. 57–64.

161. M. W. Floyd, B. Esfandiari, and K. Lam, “A case-based reasoning approach to
imitating robocup players,” in FLAIRS Conference, 2008, pp. 251–256.

162. S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Learning from demonstra-
tion and case-based planning for real-time strategy games,” in Soft Computing
Applications in Industry. Springer, 2008, pp. 293–310.

163. M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration.” VISAPP (1), vol. 2, 2009.

164. J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Jour-
nal of the American Statistical Association, vol. 58, no. 301, pp. 236–244, 1963.

151



165. H. H. S. T. Huang, Victor and C. J. Tomlin, “Contrails: Crowd-sourced learning
of human models in an aircraft landing game,” in Proceedings of the AIAA GNC
Conference, 2013.

166. B. Morris and M. Trivedi, “Learning trajectory patterns by clustering: Exper-
imental studies and comparative evaluation,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 312–319.

167. X. Li, W. Hu, and W. Hu, “A coarse-to-fine strategy for vehicle motion trajec-
tory clustering,” in ICPR 2006, vol. 1. IEEE, 2006, pp. 591–594.

168. D. M. Lane, Ed., Introduction to Statistics: An interactive eBook. Rice Uni-
versity, 2013.

169. M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,” in ICRA
2006. IEEE, 2006, pp. 3344–3349.

170. J. Wiest, M. Hoffken, U. Kresel, and K. Dietmayer, “Probabilistic trajectory
prediction with gaussian mixture models,” in IEEE Intelligent Vehicles Sympo-
sium. IEEE, 2012, pp. 141–146.

171. C. Miller, M. E. Miller, G. L. Calhoun et al., “Triggering changes in adaptive
automation evaluation of task performance, priority and frequency,” in Systems,
Man and Cybernetics (SMC), 2014 IEEE International Conference on. IEEE,
2014, pp. 1732–1737.

172. T. Bhuvaneswari and S. Prabaharan, “A survey on software development life cy-
cle models,” International Journal of Computer Science and Mobile Computing,
vol. 2, no. 5, pp. 262–267, May 2013.

173. D. Green and A. DiCaterino, A survey of system development process models.
Center for Technology in Government, University at Albany-SUNY, 1998.

174. K. Schwaber, “Scrum development process,” in Business Object Design and Im-
plementation, J. Sutherland, C. Casanave, J. Miller, P. Patel, and G. Hollowell,
Eds. Springer London, 1997, pp. 117–134.

175. C. Larman and V. R. Basili, “Iterative and incremental development: A brief
history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

176. K. Beck, “Embracing change with extreme programming,” Computer, vol. 32,
no. 10, pp. 70–77, 1999.

177. J. Martin, Rapid application development. Macmillan publishing company,
1991.

152



178. A. Azevedo and M. F. Santos, “Kdd, semma and crisp-dm: A parallel overview,”
in Proceedings of the IADIS European Conference on Data Mining, July 2008,
pp. 182–185.

179. H. A. Edelstein, “Introduction to data mining and knowledge discovery,” 1998.

180. G. Mariscal, Ó. Marbán, and C. Fernández, “A survey of data mining and knowl-
edge discovery process models and methodologies,” The Knowledge Engineering
Review, vol. 25, no. 02, pp. 137–166, 2010.

181. S. Ahangama and D. C. C. Poo, International Journal of Medical, Health,
Biomedical and Pharmaceutical Engineering, vol. 8, no. 11, pp. 768–776, 2014.
[Online]. Available: http://waset.org/Publications?p=95

182. S. Benbelkacem, M. Belhocine, N. Zenati-Henda, A. Bellarbi, and M. Tadjine,
“Integrating human-computer interaction and business practices for mixed re-
ality systems design: a case study,” Software, IET, vol. 8, no. 2, pp. 86–101,
2014.

183. K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey, “A survey of user-
centered design practice,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2002, pp. 471–478.

184. M. R. Endsley, Designing for situation awareness: An approach to user-centered
design. CRC Press, 2011.

185. I. Newman and C. R. Benz, Qualitative-quantitative research methodology: Ex-
ploring the interactive continuum. SIU Press, 1998.

186. T. Inagaki, “Adaptive automation: Sharing and trading of control,” Handbook
of cognitive task design, vol. 8, pp. 147–169, 2003.

187. C. Miller, H. Funk, P. Wu, R. Goldman, J. Meisner, and M. Chapman, “The
playbook approach to adaptive automation,” in Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, vol. 49, no. 1. SAGE Publica-
tions, 2005, pp. 15–19.

188. S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task load index):
Results of empirical and theoretical research,” Advances in psychology, vol. 52,
pp. 139–183, 1988.

189. B. Kirwan, A. Evans, L. Donohoe, A. Kilner, T. Lamoureux, T. Atkinson, and
H. MacKendrick, “Human factors in the atm system design life cycle,” in pro-
ceedings of EUROCONTROL/FAA ATM R & D Seminar, 1997, pp. 16–20.

190. A. Renkl and R. K. Atkinson, “Structuring the transition from example study
to problem solving in cognitive skill acquisition: A cognitive load perspective,”
Educational psychologist, vol. 38, no. 1, pp. 15–22, 2003.

153



191. K. A. Ericsson and A. C. Lehmann, “Expert and exceptional performance: Evi-
dence of maximal adaptation to task constraints,” Annual review of psychology,
vol. 47, no. 1, pp. 273–305, 1996.

192. J. Shanteau, D. J. Weiss, R. P. Thomas, J. Pounds, and B. Hall, “How can
you tell if someone is an expert? empirical assessment of expertise,” Emerging
perspectives on judgement and decision research, pp. 620–639, 2003.

193. D. L. Mann, B. Abernethy, and D. Farrow, “Action specificity increases antic-
ipatory performance and the expert advantage in natural interceptive tasks,”
Acta Psychologica, vol. 135, no. 1, pp. 17–23, 2010.

194. A. Didierjean and F. Gobet, “Sherlock holmes–an expert’s view of expertise,”
British Journal of Psychology, vol. 99, no. 1, pp. 109–125, 2008.

195. M. Harré, T. Bossomaier, and A. Snyder, “The development of human expertise
in a complex environment,” Minds and Machines, vol. 21, no. 3, pp. 449–464,
2011.

196. R. W. Proctor and T. Van Zandt, Human factors in simple and complex systems.
Boca Raton: CRC Press, 2008, ch. Experts and Expert Systems, pp. 315–337.

197. S. C. Sutherland, C. Harteveld, and M. E. Young, “The role of environmental
predictability and costs in relying on automation,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, ser. CHI
’15. New York, NY, USA: ACM, 2015, pp. 2535–2544. [Online]. Available:
http://doi.acm.org/10.1145/2702123.2702609

198. G. Grote, C. Ryser, T. WĀLER, A. Windischer, and S. Weik, “Kompass: A
method for complementary function allocation in automated work systems,”
International Journal of Human-Computer Studies, vol. 52, no. 2, pp. 267–287,
2000.

154



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

09–17–2015 Doctoral Dissertation Sept 2012 — Sep 2015

Adaptive Automation Design and Implementation

13RSL-AFIT1

Bindewald, Jason M., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-DS-15-S-007

US Air Force Office of Scientific Research, Cognition and Decision
Attn: James H. Lawton, PhD
4075 Wilson Blvd., Suite 350
Arlington, VA 22203
(703)696-5999 (DSN: 426-5999) James.Lawton.1@us.af.mil

AFOSR

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material has been declared a work of the U.S. Government and is not subject to copyright protection in the United
States.

Automations allow us to reduce the need for humans in certain environments, such as auto-pilot features on unmanned
aerial vehicles. However, some situations still require human intervention. Adaptive automation is a research field that
enables computer systems to adjust the amount of automation by taking over tasks from or giving tasks back to the user.
This research develops processes and insights for adaptive automation designers to take theoretical adaptive automation
ideas and develop them into real-world adaptive automation system. These allow developers to design better automation
systems that recognize the limits of computers systems, enabling better designs for systems in fields such as multi-aircraft
control. This research was sponsored by AFOSR.

Adaptive Automation, System Design, Human-Computer Interaction, Function Allocation, Player Modeling

U U U U 168

Dr. Gilbert L. Peterson, AFIT/ENG

(937) 255-3636, x4281; gilbert.peterson@afit.edu


